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ABSTRACT 

This dissertation investigates neural network approaches to pattern classification.  

One application considered is the classification of land use change in the Nile River delta 

between 1984 and 1993 from ten Landsat Thematic Mapper (Landsat TM) images 

acquired during this period.  Other applications, including image segmentation, letter 

recognition, and prediction of variables from census data, are represented by the 

standardized DELVE (Data for Evaluating Learning in Valid Experiments) machine 

learning database.  

An ARTMAP (Adaptive Resonance Theory Map) neural network system is 

developed for the land use change classification task.  Cross-validation is used to enable 

design decisions and to enable model fitting to be done without regard to data in test 

partitions.  The training of voting ARTMAP systems on brightness-greenness-wetness 

(BGW) data for multiple dates and location data results in performance competitive with 

previously used expert systems. 
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Orthonormal basis function classification methods are extended to make them 

appropriate for multidimensional problems.  These methods share the multilayer 

perceptron architecture common to many neural networks.  A layer of basis functions 

transforms the data prior to classification.  Stopping rules are used to determine which 

basis functions to include in a model to minimize the expected mean integrated squared 

error (MISE).  To perform stopping when using the discriminant function of Devroye et 

al. (1996), an appropriate MISE estimator is developed.  Linear transformations to rotate 

data and improve multiple classification results are investigated using development 

benchmarks from the DELVE suite.  Orthonormal basis function neural network 

classifiers using these principles are developed and tested along with standard pattern 

classification techniques on the DELVE suite.  Orthonormal basis function systems 

appear to be well suited for some multidimensional problems.  These systems, along with 

benchmark classifiers, are also applied to the Nile River delta dataset.  Although 

orthonormal basis function systems are an appropriate choice for this task, the best 

performance observed on this dataset is that of linear discriminant analysis (LDA) 

applied to multitemporal data. 
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Chapter 1 

Introduction 

1.1 ARTMAP neural networks for land use change classification 

The ability to detect and monitor changes in conditions at the Earth's surface is 

essential for understanding human impact on the environment and for assessment of the 

sustainability of development.  Advances in remote sensing technology are making vast 

multitemporal databases available to researchers.  Multitemporal refers to data collected 

at multiple times; the multitemporal data studied in this dissertation are multi-date data, 

having been collected on multiple dates.  Such databases, which contain multiple images 

of a given region acquired over a period of time, may yield important information about 

environmental changes.  This information needs to be extracted from high-dimensional 

multispectral and multitemporal data.  Automated change classification based on 

sequences of large satellite images requires new, appropriate pattern recognition methods.  

These methods should detect subtle long-term changes from high-dimensional data. 

A novel land use change classification methodology that employs an ARTMAP 

neural network classifier has been developed as part of this dissertation.  This 

methodology allows the identification of changes across a sequence of images of a given 

area.  These images need not be taken under the same seasonal, atmospheric, or 

illumination conditions, and sensor calibration need not be consistent across the 

sequence.  The ARTMAP system can overcome these inconsistencies by learning to 

identify the spectral patterns across multiple dates.  This methodology was developed and 
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evaluated on a multi-date database of Landsat TM images of the Nile River delta region 

showing land use changes from 1984 to 1993. 

The ARTMAP land use change classifier system employs a cross-validation 

scheme that allows the system to be evaluated on subsets of an available database while 

being developed using other subsets.  The system was developed for and applied to the 

problem of classifying land use changes in the Nile River delta over a period of ten years. 

1.2 Orthonormal basis function neural networks for pattern 

classification 

The current understanding of pattern classification using orthonormal basis 

functions is insufficient for application to multidimensional classification problems.  

Existing basis function selection methods as mainly used in the literature do not scale 

well to multidimensional problems.  Moreover, there are few serious evaluations of 

orthonormal basis function classifiers available for the practitioner who wishes to 

implement such a method. 

This dissertation develops statistical tools based on analysis of the mean 

integrated squared error (MISE) measure of goodness-of-fit applied to classification 

models.  These tools are necessary to allow stopping rule basis set selection methods to 

be applied to multidimensional classification problems in a novel way.  The MISE-based 

tools lead to methods for simplifying orthonormal basis function neural network models 

by single-term exclusion and methods for comparing models that use different bases.  

Multidimensional classification models have been constructed and optimized using these 
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new methods and have been tested on a number of benchmark classification tasks 

including databases from the DELVE (Rasmussen, Neal et al. 1996) and UCI machine 

learning (Hettich, Blake et al. 1998) archives.  These tests were examined for further 

insights into the characteristics of multidimensional orthonormal basis function 

classifiers. 

Orthonormal basis function neural networks are based on the multilayer 

perceptron architecture.  They are closely related to radial basis function neural networks.  

Both orthonormal basis function neural networks and radial basis function neural 

networks consist of an input layer, a basis function layer that maps the input vector into a 

high-dimensional space, and an output layer composed of additive neurons. 

Radial basis function networks employ a set of basis functions of identical form 

that can be described by the locations of their centers and the variables that control their 

spread.  These parameters specify a transformation from the problem space into a radial 

basis space.  In this type of basis, data are transformed into a system in which the 

parameters associated with each basis function covary with the parameters associated 

with every other basis function.  Determining optimal parameters requires a nonlinear 

optimization, which takes more time to compute than a linear optimization. 

Orthonormal basis function networks, on the other hand, employ a set of basis 

functions that are necessarily orthogonal.  In models of this type, the parameters 

associated with each basis function can be determined independently of the parameters 

associated with every other basis function.  Determining optimal parameters requires only 
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fast linear computations.  For a two-class problem, this training process has 

computational complexity 

 ( )O MND , (2.1) 

where M  is the number of training exemplars, N  is the number of basis functions under 

consideration, and D  is the dimensionality of the input space.  The complexity is 

uniform under all assumptions about the data and scales linearly in each of M , N , and 

D .  For comparison, training of a fast support vector regularization algorithm has 

computational complexity 

 ( )2O M D  (2.2) 

(Platt 1999).  Redundancy in the data can improve computation speed by up to an order 

of M .  Fitting a radial basis function neural network or similar model with fixed, 

nonorthogonal basis functions requires regularization, carried out through computation of 

a matrix pseudoinverse (Haykin 1994; Bishop 1995).  The pseudoinverse is equivalent 

computationally to obtaining the singular value decomposition (SVD).  The SVD can be 

computed in 2 34 8MN N+  operations, in the case of the Golub-Reinsch SVD algorithm, 

or 2 32 11MN N+  operations, in the case of the Chan or R-SVD algorithm (Golub and 

Van Loan 1989).  Thus, regularization of a network of fixed, nonorthogonal basis 

functions typically has computational complexity 

 ( )2 3O MN N+ . (2.3) 

Orthonormal basis function models are expected to be faster to fit than similar models 

employing other bases or regularization methods. 
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Orthonormal basis function networks are known in the statistical literature, in 

which they are referred to as the method of orthonormal series expansions (Devroye, 

Györfi et al. 1996).  Examples given in the literature demonstrate the use of orthonormal 

series expansions for one-dimensional and two-dimensional classification problems.  

However, it appears that this method has not been successfully applied to relevant 

multidimensional problems of dimension greater than two and that further methodology 

needs to be developed for these problems. 

This dissertation develops and formalizes a novel methodology for constructing 

orthonormal basis function classifiers.  The methodology differs from those currently 

available in that it combines all of the elements required for applicability to 

multidimensional problems.  The mean integrated squared error (MISE) measure of 

goodness-of-fit is well known within the pattern recognition literature (Tarter and Lock 

1993).  In this dissertation, it forms the foundation for a number of statistical decisions 

that are required for determining an orthonormal basis function model.  The development 

of the relative MISE (RMISE) measure in this dissertation leads to new statistical tests 

for selecting a model from a set of potential models, determining the optimum 

complexity of a model, and selecting individual terms that can be removed from a model 

without adverse impact.  All of these procedures may be conducted rapidly within a 

pattern recognition algorithm.  This is important since a key reason for choosing 

orthonormal basis function networks over other multilayer perceptron models is the 

greater speed of fitting an orthonormal model.  However, this simplicity translates into a 
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less parsimonious parameterization for nonlinear as opposed to linear models (Barron 

1993; Barron 1994). 

Another aspect of this work is benchmarking orthonormal basis function neural 

network models to identify their strengths and limitations with respect to existing 

classification methods.  Currently there is insufficient scientific evidence to guide 

practitioners in determining whether orthonormal basis function models should be 

considered for particular types of problems. One reason for this is that current 

orthonormal basis function methodologies are not generally useful for applications to 

practical problems of more than two dimensions.  Further investigation of the theoretical 

methodology should lead to greater applicability to classification models.  For example, 

tools such as the University of Toronto’s DELVE statistical suite for machine learning 

performance assessment (Rasmussen, Neal et al. 1996) and the University of California 

Irvine’s repository of machine learning datasets (Hettich, Blake et al. 1998) provide 

standardized processes for testing machine learning methods.  They enable standardized 

comparisons of test results for methods that are applicable to datasets similar to those in 

the repositories. Experiments employing these tools have been conducted to evaluate the 

new orthonormal basis function methodology.  Results are discussed in this dissertation.
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Chapter 2 

ARTMAP Neural Networks for Land Use Change Classification 

2.1 Introduction 

Detecting and monitoring changes in conditions at the Earth’s surface are 

essential for understanding human impact on the environment and for assessing the 

sustainability of development. In the next decade, NASA will gather high-resolution 

multispectral and multitemporal data, which could be used for analyzing long-term 

changes, provided that available methods can keep pace with the accelerating flow of 

information. This chapter introduces an automated technique, based on the ARTMAP 

neural network, for change identification. In addition to classifying land use changes 

from multitemporal, multispectral data, the system produces a measure of confidence in 

classification accuracy. Landsat thematic mapper (TM) imagery of the Nile River delta 

provides a testbed for these land use change classification methods. This dataset consists 

of a sequence of ten images acquired between 1984 and 1993 at various times of year. 

Field observations and photo interpretations have identified 358 sites as belonging to 

eight classes, three of which represent changes in land use over the ten-year period. A 

particular challenge posed by this database is the unequal representation of various land 

use categories: three classes, urban, agriculture in delta, and other, comprise 95% of 

pixels in labeled sites. A two-step sampling method enables unbiased training of the 

neural network system across sites. 
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ARTMAP systems belong to the adaptive resonance theory (ART) family of 

neural networks, which feature fast and stable learning.  They benefit from an 

architecture that differentiates them from other neural networks such as multilayer 

perceptrons (MLPs).  This architecture enables ARTMAP systems to retain memories 

without forgetting them when other data are presented (Carpenter, Gopal et al. 1999).  

These systems’ parameters can converge to completely code an input vector in a single 

presentation without forgetting previously presented data.  This fast learning limits the 

number of iterations required to fully train an ARTMAP neural network. 

In addition to fast training, ARTMAP networks incorporate control mechanisms 

that enable them to create internal category representations that allow generalization 

within classes while ensuring that each training pixel is correctly classified (Carpenter, 

Gopal et al. 1999).  This adaptive method of constructing category representations allows 

these neural networks to be applied to extended areas in which it is not known how well 

results for one site will generalize to other sites.  Where generalization is not possible 

within the training set, multiple internal representations will be constructed to incorporate 

dissimilar sites. 

ARTMAP neural networks have previously been shown to be effective tools for 

land cover classification of individual images (Carpenter, Gjaja et al. 1997; Carpenter, 

Gopal et al. 1999; Gopal, Woodcock et al. 1999). A straightforward extension of these 

networks to land cover change classification might first establish categorical 

classifications for each date. Postclassification comparisons of single-date class labels 

would then show how land cover had changed during the study period. Unfortunately, 
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such a straightforward method gives poor results, since errors in single-date 

classifications are compounded when multiple images are considered (Singh 1989). 

Abuelgasim et al. (Abuelgasim, Ross et al. 1999) introduced a Change Detection 

Adaptive Fuzzy (CDAF) network for environmental change detection and classification 

to monitor land cover changes resulting from the Persian Gulf War. This ARTMAP-

based neural network compares images from multiple dates by assessing quantitative 

change in class likelihood or class intensity, rather than directly comparing class labels. 

Multi-date classification combines spectral information from a series of dates to 

form multitemporal feature vectors.  This method does not rely on single-date 

classifications, but rather differentiates constant land use from changing land use by 

direct application of a classifier algorithm to the multitemporal data. Multi-date 

classification has previously been implemented to detect land use change using the K-

means technique (Abuelgasim, Ross et al. 1999).  Muchoney and Williamson (2001) used 

multitemporal NDVI data as inputs to a Gaussian ARTMAP neural network that 

classifies land cover. 

An advantage of multi-date classification is that images need not be taken under 

uniform seasonal, atmospheric, or illumination conditions, and sensor calibration need 

not be consistent across the sequence. Images are not compared directly to one another; 

rather, they are combined to form a rich database from which land use change patterns 

can be discovered.  This is both a blessing and a curse, as the dimension of the feature 

vectors in the database increases with each date represented. The ARTMAP system is 

designed to deal effectively with high-dimensional data. It has been applied successfully 



 

 

10

to generate models with less classification error than those previously available for 

problems involving hundreds of input features (Caudell, Smith et al. 1994; Rubin 1995), 

as well as to a number of remote sensing land cover classification problems (Carpenter, 

Gjaja et al. 1997; Abuelgasim, Ross et al. 1999; Carpenter, Gopal et al. 1999; Carpenter, 

Gopal et al. 1999; Gopal, Woodcock et al. 1999; Muchoney and Williamson 2001). 

The multi-date ARTMAP classification method developed here and in Carpenter, 

Gopal et al. (2001) and Shock, Carpenter et al. (2002) extends single-date neural network 

land cover classification methods by using multitemporal, multispectral feature vectors 

derived from a sequence of ten satellite images as inputs to the neural network system.  

The ARTMAP change classification system overcomes inconsistencies by learning to 

identify the multi-date spectral signatures of image pixels. Using internal measures, it 

estimates confidence in classification accuracy. This is similar to decision trees that can 

give classification probability estimates (McIver and Friedl 2001). 

2.2 Data 

Ten Landsat TM images of the Nile River delta region and surrounding areas 

were taken at various times of year between 1984 and 1993. The images form the dataset 

used by Lenney et al. (Lenney, Woodcock et al. 1996) to classify land use changes based 

on characteristics of the multi-date NDVI vegetation index feature vector.  The images 

were geometrically registered and normalized as described in that study. Field data were 

collected during the summer of 1993 at 88 sites in the study area. Ground truth labels for 

270 additional sites were determined by expert image analysis at the Boston University 

Center for Remote Sensing. This information was combined to form a database of 358 



 

 

11

sites. In order to make full use of the limited number of labeled sites, the present study 

employs four-fold cross-validation. To this end, the database was partitioned into four 

subsets, each containing 89, 90, or 91 sites. Each of the four subsets was then used, in 

turn, as a test set to evaluate the performance of an ARTMAP classifier which had been 

trained on the sites in the other three subsets. Carpenter et al. (1999) describe the use of 

such a cross-validation method to evaluate machine learning systems for remote sensing 

applications. 

2.3 Method 

2.3.1 Data preprocessing 

Prior to performing model selection, input vectors were preprocessed. This 

preparation consisted of computing transformations and scaling each input component to 

the interval [0,1], which is the domain of Fuzzy ARTMAP inputs. 

In order to investigate which input variables would be most useful for ARTMAP 

neural network identification of land use change categories, several feature sets were 

prepared using different transformations of the spectral data.  Results of prior ARTMAP 

remote sensing applications suggested that auxiliary variables (pixel location coordinates 

and geographic zone designations) might also contribute to classification performance 

(Carpenter, Gjaja et al. 1997; Carpenter, Gopal et al. 1999).  The transformed spectral 

data from multiple dates and auxiliary variables were concatenated to create 

multitemporal, multimodal input vectors for the neural network classifier.   
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2.3.2 Model selection 

Cross-validation was used to select both a linear transformation of the input data 

and certain parameters of the ARTMAP model based on the transformed data.  For each 

of the four training/testing partitions, input variable transformations were selected by 

cross-validated evaluation of three potential transformations.  The Tasseled Cap 

transformation applied to each image (Table  2.1) gave the best performance of the 

transformations under consideration. This fixed transformation is desirable for many 

remote sensing tasks because of its similarity to PCA performed on Landsat TM images 

and dimension reduction to three variables that correspond closely to features of interest.  

Performance also improved when the Brightness, Greenness and Wetness (BGW) 

coefficients of this feature set were supplemented with geographic zone information and 

image pixel locations. 
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Input 
vector 
element 

Description 

1-3 Brightness, Greenness, and Wetness coefficients from June 7, 1984 image 
4-6 Brightness, Greenness, and Wetness coefficients from September 11, 1984 image 
7-9 Brightness, Greenness, and Wetness coefficients from June 10, 1985 image 
10-12 Brightness, Greenness, and Wetness coefficients from December 22, 1986 image 
13-15 Brightness, Greenness, and Wetness coefficients from August 21, 1988 image 
16-18 Brightness, Greenness, and Wetness coefficients from August 3, 1990 image 
19-21 Brightness, Greenness, and Wetness coefficients from February 19, 1991 image 
22-24 Brightness, Greenness, and Wetness coefficients from June 13, 1992 image 
25-27 Brightness, Greenness, and Wetness coefficients from April 29, 1993 image 
28 Pixel x-coordinate 
29 Pixel y-coordinate 
30 Geographic region indicator for delta (Boolean) 
31 Geographic region indicator for desert (Boolean) 
32 Geographic region indicator for coast (Boolean) 
33 Geographic region indicator for wetlands (Boolean) 

Table  2.1:  Inputs to the ARTMAP neural network classification system.  Although 
ten images were available, the Brightness, Greenness, and Wetness (BGW) 
coefficients of the Tasseled Cap transformation could only be computed for nine 
dates due to a missing spectral band in one image. 

Similarly, most parameters of the four neural network systems were determined 

by evaluation on the respective training sets (Table  2.2). 
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 Partition 
1 

Partition 
2 

Partition 
3 

Partition 
4 

ρ  (baseline vigilance parameter) 0 0 0 0 
α  (choice parameter) .0025 .001 .01 .001 
V  (number of voters) 3 2 5 4 
Average number of training 

presentations of each site via 
representative pixels 

190 70 106 62 

Table  2.2:  ARTMAP parameters determined by cross-validated evaluation on the 
training data for four partitions of the dataset.  All systems used a priori the 
learning rate parameter β =1.0, match tracking control ε =-.001, and CAM decision 
rule power p=1.0.  Instance counting (IC) was not enabled. 

2.3.3 Training 

Each ARTMAP network was trained by presenting a random sequence of pixels 

from the training subset. A major challenge encountered with this database was that the 

number of pixels in individual sites varied considerably, with training sites ranging in 

size from 4 to 3,440 pixels. It seemed that adequate representation required that small 

sites be adequately represented in the neural network training set while still exploiting 

information contained in all pixels of large sites. This goal was achieved via a two-step 

pixel sampling process. Each training pixel was determined by first selecting a random 

training site and then selecting a random pixel from that site to produce a sample 

unbiased with respect to the available sites. The duration of training was determined 

during the model selection phase. 

2.3.4 Model testing (validation) 

Multiple trained ARTMAP networks were combined to form a committee voting 

system to improve classification performance and stability (Bishop 1995). Combining 
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two or more networks in a committee and making a classification decision on the basis of 

the average output of these committee members improves the expected performance of 

neural network systems (Bishop 1995). The number of voting networks (V) was 

determined during parameter selection, with each voter weighted equally. The net vote 

for each class k was taken to be the average analog output across the V voters. A 

classification decision was made by selecting the class with maximum average output 

value. 

The analog values assigned to pixels by the voting system may be thought of as 

estimates of their fuzzy membership in various classes. Averaging these values across all 

the pixels within a site gives membership estimates for the site. The system labels a four-

pixel testing (validation) site as belonging to the class to which it attaches the greatest 

fuzzy membership value. 

2.4 Results and discussion 

The present analysis shows how an ARTMAP system can automate the 

classification of land use change from remote sensing data, producing the map shown in 

Figure  2.1. The user’s accuracy, defined as the rate of correct classification of test set 

sites in the ground truth database, averaged 84.6% for the four systems (Table  2.3), 

compared to user’s accuracy of 87.55% reported by Lenney et al. (1996). The producer’s 

accuracy, which adjusts classification rates in proportion to the estimated true fractions 

of land use change categories in the map, averaged 86.4%, as estimated using the method 

of Card (Card 1982). During training, each neural network attempts to optimize user’s 

accuracy, without knowledge of underlying class probabilities that might enable higher 
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producer’s accuracy, such as the 95.85% obtained by Lenney et al. Note that Lenney et 

al. used a different, overlapping assessment dataset and different testing methodology, so 

these results are not directly comparable. 

 
Figure  2.1:  Composite map showing ARTMAP classifications of land use changes, 
after water had been separated from land via a linear threshold mask. Classes are 
superimposed on a false color image acquired in 1993. Four systems, each of whose 
performance has been determined by cross-validated testing, were combined to 
create this map. 
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 Partition 
1 

Partition 
2 

Partition 
3 

Partition 
4 

Mean of 
four 

partitions
User’s accuracy (%) 89.9 85.4 84.3 79.1 84.6 
Producer accuracy 
(%) 88.5 86.9 90.2 80.1 86.4 

Table  2.3:  Performance of the ARTMAP land use change classifier on four cross-
validation partitions.  The variability reflects sampling bias in the selection of 
training and validation sets.  Four different systems were determined from the 
respective training sets using the same methodology; however, some parameters of 
these systems varied widely.  Furthermore, the validation accuracy was limited by 
the number of sites available for this purpose, approximately 90 for each partition. 

Confusion matrices (Table  2.4 and Table  2.5) provide details of system predictive 

accuracy for each of the nine output classes. Two of the land use change classes, 

urbanization and wetlands reclaimed, had insufficient data for training the neural 

network. In particular, the entire ground truth dataset included only three wetlands 

reclaimed sites. Not surprisingly, the learning systems consistently failed to identify these 

sites when they had not been seen at all during training. Like the NDVI-based 

classification system developed by Lenney et al. (1996), the ARTMAP classifier had 

substantial difficulty distinguishing between urban and reduced productivity classes. 

These classes have similar spectral signatures which are easily confused.  The 

separability characteristics of these data are revisited in  Chapter 6 of this dissertation. 
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  Field assessments 

Land use 
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Urban 83 63 2 10 3  2  3 75.9% 

Urbanization 1  1       100.0% 

Reduced productivity 20 2 1 17      85.0% 

Agriculture in delta 147 4 6 4 132    1 89.8% 

Agriculture in 
desert/coast 15     12 1  2 80.0% 

Reclamation 13     2 10  1 76.9% 

Wetlands reclaimed 1        1 0.0% 

Other 78     1 6 3 68 87.2% 

Total 358 69 10 31 135 15 19 3 76 
Overall

84.6% 

Table  2.4:  User’s Accuracy Assessment:  a composite of the performance of the 
ARTMAP land use change classifier on the four cross-validation partitions. 
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  Field assessments 

Land use 
classifications 

Sites 
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M
ap

 p
ro

po
rti

on
s 

Urban 25 5.055
%  0.689

%      5.744% 

Urbanization 0          

Reduced 
productivity 4   1.804

%      1.804% 

Agriculture in 
delta 35  2.619

%  43.214
%     45.833% 

Agriculture in 
desert/coast 4     4.411

%    4.411% 

Reclamation 2     2.223
% 

2.223
%   4.446% 

Wetlands 
reclaimed 0          

Other 19      3.968
% 

1.984
% 

31.742
% 37.694% 

True proportions 5.055
% 

2.619
% 

2.493
% 

43.214
% 

6.634
% 

6.191
% 

1.984
% 

31.742
%  

Producer’s accuracy 100.0
% 

0.00
% 

72.36
% 

100.0
% 

66.49
% 

35.91
% 

0.00
% 

100.0
% 

Overall 
88.45% 

Table  2.5:  Producer’s Accuracy Assessment:  This performance assessment is for 
the system developed for the first cross-validation partition. Table  2.3 indicates that 
the performance on this partition is typical. 

A benefit of using ARTMAP neural networks to generate land use change 

classification maps is that the confidence of classification decisions is readily available 

via the variables σk , which provide the system’s class probability estimates.  A map of 

classification confidence similar to Figure  2.2 thus accompanies each primary map of 

land use changes. Note in Figure  2.1 that large areas in the southwest quadrant of the 

study area are incorrectly classified by the ARTMAP system as urban.  Figure  2.2 shows 
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that the ARTMAP system is least certain of its predictions in these regions. Identification 

of the areas in which the network’s classifications are most likely to be incorrect could 

guide manual editing of a land use change map. These areas could also be used to guide 

collection of additional ground truth data. 

 
Figure  2.2:  Composite map showing confidence of ARTMAP land use change 
classifications, with red indicating regions of lowest confidence. Four systems, each 
of whose performance has been determined by cross-validated testing, were 
combined to create this map. The confidence measure, which is based on ARTMAP 
output values, reflects the degree of system confusion between two or more classes. 

A key feature of ARTMAP neural network classifiers is that large-scale datasets 

can be analyzed rapidly and automatically once enough sample field identifications have 
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been made to form the training set. No ARTMAP system in this study required more than 

18,000 input vector presentations during training. 

2.5 Conclusions 

Like other change classification methods, the ARTMAP system presented in this 

chapter has attributes that recommend it for certain types of problems. In particular, the 

multi-date ARTMAP neural network classifier accepts high-dimensional spectral 

signatures containing features from a number of different dates.  It produces both a land 

use change classification map and a confidence map, based on internal parameters, which 

can be used to evaluate the quality of the land use change classifications. 

The methods described in this chapter are useful for identifying pixels that 

correspond to known types of land use and land use change in the image database. A 

second type of categorical change detection is the identification of new land cover 

classes, as discussed by Abuelgasim et al. (1999). The latter type of detection was not 

within the scope of this study but is a promising area for further application and analysis 

of multi-date neural network change detection systems. 
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Chapter 3 

Orthonormal basis function neural networks for pattern classification 

3.1 Introduction 

The rest of this dissertation explores how organization of artificial neurons into an 

orthonormal frame simplifies the computations required to perform pattern classification 

tasks.  To this end, this and subsequent chapters develop computational procedures that 

enable orthonormal basis function neural networks to be applied to a wide range of 

classification problems. 

Classifiers that utilize orthonormal bases are known within the statistical 

literature, but their applicability is limited.  Much work remains to be done to make 

orthonormal basis function classifiers viable options for multidimensional classification 

problems.  Current methods for selecting a set of basis functions from a multidimensional 

tensor product basis typically require selection of a cutoff frequency n-tuplet (Devroye, 

Györfi et al. 1996).  Such methods are inappropriate for problems of dimension greater 

than two. 

A key contribution of this dissertation is the adaptation of rules that rely upon 

single-parameter cutoff determination to the selection of a set of basis functions from a 

multidimensional tensor product basis.  This allows one-dimensional stopping methods to 

be applied to the construction of a pool of neurons that exploit the property of 

orthonormality to represent a multidimensional problem space.  The stopping methods 

employed for basis function selection need to utilize a goodness-of-fit measure.  For 
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reasons of convenience, an estimate of the mean integrated squared error (MISE), a 

common goodness-of-fit measure, is used for this work.  It is important to note that there 

are methods for model selection that do not require a stopping point, such as the stepwise 

forward and backward regression used in certain additive spline fitting procedures 

(Friedman and Silverman 1989; Friedman 1991; Stone, Hansen et al. 1997).  These were 

not pursued in this dissertation, although they provide an interesting direction for future 

work ( 7.2.1). 

A second, related novel aspect of this dissertation is the combination of a stopping 

rule to determine an optimal set of basis function neurons to represent a particular 

problem with a single-term exclusion rule to remove from the set neurons that do not 

contribute sufficiently to system performance.  Tarter and Lock (1993) have 

demonstrated that the use of a single-term inclusion rule, which individually selects terms 

to be included in a the orthonormal basis function model of a problem, results in an 

excess of basis functions.  Given a preselected set of basis functions, however, single-

term exclusion rules can be used to determine which of these basis functions do not 

individually reduce the error of a system.  Excluding such terms reduces the number of 

parameters in a model and decreases the expected error.  This is a new use of single-term 

criteria based on measures of goodness-of-fit such as the MISE. 

The MISE is frequently used to fit and evaluate orthonormal basis function 

systems.  Estimators of the MISE exist for density estimation using orthonormal systems, 

and similar computations can be used for classification using the orthonormal 

discriminant method presented by Devroye et al. (1996).  Although other discriminant 
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functions and estimators may be used, the method of Devroye was selected for this work 

because of its simplicity and known asymptotic properties. 

3.2 Background 

Cencov (1962) introduced the use of Fourier series to represent probability 

density estimates.  Other orthonormal series density estimation and classification 

methods use the same fundamental model.  They differ in the bases used, such as the 

Daubechies wavelet bases and the discrete cosine basis; the functions being estimated, 

discriminant functions instead of density functions, for example; and the ways in which 

coefficients are modified or eliminated to control the complexity of a model.  Tarter and 

Lock (1993) and Devroye et al. (1996) review many of these methods. 

Specht (1971) made use of polynomial bases for probability density estimation.  

Greblicki (1978) proved the asymptotic efficiency of Fourier series density estimates and 

extended this result (Greblicki 1981) to the Hermite polynomial basis.  Hall (1981) 

advocated a cosine series (DCT) estimator, and Diggle and Hall (1986) also mention the 

Legendre series as an option with similar properties to the trigonometric bases.  Devroye 

et al. (1996) suggest other orthonormal bases that might be appropriate for pattern 

classification, including the standard trigonometric, Laguerre, Haar, Rademacher, and 

Walsh bases.  Recent advances in wavelets offer such possibilities as the Daubechies D4 

basis (Daubechies 1992; Strang 1993). 

A problem that must be addressed to use orthonormal series density estimators as 

well as related classification methods is how to determine which of the infinitely many 

terms of a series estimator to include.  A single-term inclusion rule was proposed by 
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Tarter et al. (1967; Kronmal and Tarter 1968; Tarter and Lock 1993).  Using this rule, 

each term is considered individually for inclusion in an orthonormal series model based 

on its contribution to the overall mean integrated squared error (MISE).  The 

insufficiencies of this rule were addressed by Hart (1985) and Diggle and Hall (1986), 

who independently developed stopping rules to determine the term at which a series 

estimator should be truncated.  Efromovich (1999) uses a different estimator that is 

similar to these.  All of the stopping rules select a stopping term for orthonormal series 

models by minimizing an estimate of the MISE.  The orthonormal basis function 

classifiers investigated in this dissertation use truncation methods (stopping rules and a 

single-term exclusion rule) to select the basis functions that contribute to a model.  It 

would also be possible to use coefficient shrinkage methods (Tibshirani 1996; Hastie, 

Tibshirani et al. 2001) to achieve this end. Such a use of shrinkage methods is discussed 

briefly as a direction for future work (Section  7.2.2). 

Many of these authors have studied classification by taking ratios of orthonormal 

series probability density estimates for each class (Specht 1971; Greblicki 1978; 

Greblicki 1981; Greblicki and Pawlak 1981; Greblicki and Pawlak 1982; Greblicki and 

Pawlak 1983; Efromovich 1999).  Devroye et al. (1996) introduced an alternative 

classification approach in which a discriminant function is directly estimated using 

orthonormal series expansions.  For two-class problems, this has the potential to be more 

accurate than taking a ratio of two density estimates as this discriminant combines 

positive and negative class information in a single function. 
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3.3 Orthonormal basis function neural network architecture 

Orthonormal basis function neural networks are based on the feedforward 

multilayer perceptron architecture.  A three-layer architecture is employed by radial basis 

function networks and orthonormal basis function networks, among many systems.  In 

this architecture, an input vector x  is represented by corresponding nodes in an input 

layer.  These nodes output the values of the input vector elements.  A hidden layer of 

nodes implements a nonlinear mapping of the input vector elements.  Typically a hidden 

layer node represents a nonlinear function ( )j xϕ  of the input layer values.  This function 

may be fixed, as it is for certain radial basis function neural networks (Haykin 1994) and 

for orthogonal basis function neural networks, or the function may be adaptive, as it is for 

backpropagation neural networks (Bishop 1995).  An output layer consists of one or more 

nodes that compute network output functions by combining the results of the 

computations performed by the hidden layer nodes.  Typically an output layer node 

implements a weighted sum 

 ( ) ( )
1

n

k jk j
j

y w ϕ
=

=∑x x  (3.1) 

to perform this combination (Bishop 1995).  In this equation, jkw  is the weight assigned 

to the connection between hidden layer node j  and output layer node k .  It is common 

for the output layer nodes to pass the result of the weighted sum through a nonlinear 

function, in which case Equation (3.1) is instead written 

 ( ) ( )
1

n

k k jk j
j

y wφ ϕ
=

 
=  

 
∑x x . (3.2) 
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A common problem with models such as (3.1) and (3.2) is that the high-

dimensional nonlinear transformation ( ){ }, 1, 2,j jϕ =x …  may make fitting the models a 

computationally intensive and time-consuming task.  This is especially true of 

backpropagation neural networks, which can require tens of thousands of iterations to 

converge to a stable model (Kooperberg and Stone 1999); however, radial basis function 

neural networks and generalized additive models also suffer from computational 

difficulties imposed by nonlinear fitting. 

A promising approach to building feedforward models is to use orthonormal basis 

functions for hidden layer nodes.  Special properties of orthonormal bases enable all 

parameters of a model of this type to be determined independently of other parameters 

using fast linear computations provided that the model fits an appropriate objective 

function, such as the MISE.  Other models using the same architecture require iterative 

computations or matrix inversion operations to solve equations of many dependent 

parameters in the model fitting process.  From a computational efficiency standpoint, 

orthonormal basis function neural networks offer significant speed improvements over 

other similar models. 

The next section discusses the properties of orthonormal series expansions in 

general, including the properties that lead to this favorable result. 
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3.4 Orthonormal series expansions 

3.4.1 Properties of orthonormal bases on the domain of x  

An orthonormal basis ( ){ }, 1, 2,j jϕ =x …  has three fundamental properties on the 

domain Ξ  over which x  is defined.  These properties hold whether Ξ  is unidimensional 

or multidimensional and whether Ξ  is bounded or unbounded.  First, the norm of every 

function ( )jϕ x  is unity.  For a basis in 2L , this means that 

 ( ) ( )2 1j d jϕ
Ξ

= ∀∫ x x . (3.3) 

Second, the functions ( ){ }jϕ x  form an orthogonal set.  In 2L , this implies that 

 ( ) ( ) ( )0 , |j k d j k j kϕ ϕ
Ξ

= ∀ ≠∫ x x x . (3.4) 

Finally, if ( )ψ x  is a function in 2L  then there exists a sequence of weights { }ja  such that 

 
2

1

lim ( ) ( ) 0
j

j jj k

a dψ ϕ
→∞ =Ξ

 
− = 

 
∑∫ x x x  (3.5) 

 

3.4.2 Orthonormal bases considered for pattern classification 

3.4.2.1 Discrete cosine basis 

The univariate orthonormal discrete cosine basis on the interval 0 1x≤ ≤  is given 

by the sequence: 

 
1( ) 1

( ) 2 cos[( 1) ], 2j

x

x j x j

ϕ

ϕ π

=

= − ≥
 (3.6) 
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The first nine terms of this sequence are shown in Figure  3.1. 
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Figure  3.1:  First nine functions of the discrete cosine basis  

3.4.2.2 Legendre polynomial basis 

The Legendre polynomial basis offers a representation in which linear, quadratic, 

and higher-order polynomial relationships require a finite number of nonzero 

coefficients.  This is intuitively useful for data that may have strong linear or quadratic 

trends.  Like the cosine basis, the Legendre basis has support over the entire interval. 

The orthonormal series of Legendre polynomials on [ ]1,1−  is given by the 

Rodrigues representation: 
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 ( ) ( )21 1
2 !

l l

l l l

dP x x
l dx

= −  (3.7) 

(Gradshteyn, Rhyzik et al. 1994; Weinstein 1999).  To conform to the conventions of this 

dissertation, the orthonormal Legendre polynomials on the unit interval may be 

constructed by translation and rescaling of this series, and the constant term may be 

included: 

 
( )
( ) ( )

1

1

1

2 1 2 1 , 2,3,4,j j

x

x j P x j

ϕ

ϕ −

=

= + − = …
 (3.8) 

The first nine terms of this sequence are shown in Figure  3.2. 
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Figure  3.2:  First nine functions of the Legendre polynomial basis 
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3.4.2.3 Haar wavelet basis 

The Haar wavelets are shifted and rescaled variants of the function 

 

11 0
2

1( ) 1 1
2

0 otherwise

x

x xφ

 ≤ ≤

= − < ≤




 (3.9) 

Let  

 ( ), ( ) 2 , {0,1,2, }, {0,1, , 2 1}k k
k l x x l k lφ φ= − = = −… …  (3.10) 

(Strang 1993; Weinstein 1999).  These and the constant function form the univariate Haar 

basis on the interval [0,1] .  Normalizing, converting the double subscript ,k l  to a single 

subscript j , and including the constant function as the first term yields the sequence: 

 
( )

( )

1

,

2

( ) 1

( ) 2 ( ), 2, where

log ( 1)

1 2

k

j k l

k

x

x x j

k j

l j

ϕ

ϕ φ

=

= ≥

= −  
= − −

 (3.11) 

The first nine terms of this univariate Haar basis on [ ]0,1  are shown in Figure  3.3. 
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Figure  3.3:  First nine functions of the Haar wavelet basis 

As the Haar wavelets have local support, they are intuitively best for representing 

functions with local variations.  In a classification problem, this might be the case if local 

regions of the feature space need to be subdivided between multiple classes.  

3.4.2.4 Daubechies D4 wavelet basis 

Another orthonormal wavelet basis with local support is the Daubechies D4 

wavelet basis (Daubechies 1992).  Like the Haar basis, this should be well suited for 

tracking classification functions that vary locally; however, the D4 basis presents a 

potential advantage.  The Daubechies wavelet has two vanishing moments (Strang and 

Nguyen 1997): 
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( )

( )

0

0

w x dx

xw x dx

∞

−∞
∞

−∞

=

=

∫
∫

 (3.12) 

All of the wavelet functions are orthogonal to both a constant and a linear term, so linear 

global characteristics of a classification function may be combined with the local 

characteristics represented by wavelets. 

These wavelets are multiresolution, meaning that a basis is formed by a single 

mother wavelet function ( )w x  and the set of all dilated and translated copies of this 

function ( ){ }2 | ,jw x k j k− ∀ .  Let 

 ( ) ( ), 2 j
j kW x w x k= −  (3.13) 

The mother wavelet function 0,0 ( )W x  is normally defined on the interval [ ]1, 2− .  To form 

an orthonormal basis on the interval [ ]0,1 , let  

 ( ) ( )

( )

0,0
0,0 2

2

0,0
1

3 3 1

3 1

W x
x

W x dx

ψ

−

−
=

 − ∫
 (3.14) 

be the mother wavelet 0,0W  translated to [ ]0,1  and normalized.  The wavelets with 

support on this interval are then 

 ( ), 0,0
12

3 2
j

j k jx x kψ ψ   = −  ⋅  
, (3.15) 

where 0,1,2,j = …  and 0,1, ,3 2 3jk = ⋅ −… . 
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The Daubechies D4 wavelet basis (Daubechies 1992), along with its two 

vanishing moments, is incorporated in the following sequence of orthonormal basis 

functions on the interval [ ]0,1 : 

 

( )

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )
( )
( )

1

2

3 0,0

4 1,0

5 1,1

6 1,2

7 1,3

8 1,4

9 2,1

1

12 3
2

( )

( )

( )

x

x x

x x

x x

x x

x x

x x

x x

x x

ϕ

ϕ

ϕ ψ
ϕ ψ
ϕ ψ
ϕ ψ
ϕ ψ
ϕ ψ
ϕ ψ

=

 = − 
 

=

=

=

=

=

=

=
#

. (3.16) 

The first nine functions of this sequence are shown in Figure  3.4. 
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Figure  3.4:  First nine functions of the second-order (D4) Daubechies wavelet basis 
in one dimension 

3.4.3 Tensor product construction of a multivariate orthonormal basis 

A multivariate orthonormal basis can be constructed from univariate bases by 

taking the tensor product of the vectors of univariate basis functions.  A bivariate tensor-

product basis ,{ ( , ), , 1, 2, }m n x y m nϕ = … , for example, can be made from the univariate 

bases { ( ), 1,2, }m y mφ = …  and { ( ), 1,2, }n z nψ = …  as follows (Efromovich 1999): 

 ,{ ( , ) : ( ) ( ), , 1, 2, }m n m ny z y z m nϕ φ ψ= = …  (3.17) 

It becomes difficult to index subscripts for elements of bases in more than two 

dimensions.  Although it is possible to denote the elements of a tensor-product basis by 
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their multiple subscripts, this notation is often cumbersome.  It is possible to map the 

functions in a tensor-product basis to univariate indices in a one-to-one manner. 

 , ,{ ( , , ), , , 1, 2, }m n y z m nϕ =… … … …  (3.18) 

can simply be written 

 { ( ), 1,2, }j jϕ = …x , (3.19) 

where 

 , ,y z= …x . 

Employing the vector notation x  for the multivariate function arguments simplifies the 

mathematical notation and highlights the parallels with univariate orthonormal series 

expansions.  The notation in (3.19) is not dependent on the dimensionality of the problem 

and can represent orthonormal bases for problems of arbitrary dimensionality.  Such a 

mapping of indices from a vector to a scalar does not specify the ordering of basis 

functions with respect to the scalar index.  Because the series will be truncated, the actual 

ordering of terms is an important consideration.  The goal of ordering the components is 

to assign low indices to components that are likely to be useful so they do not fall beyond 

the truncation point and hence out of a model. 

3.5 Basis function selection utilizing stopping rules 

Certain problems naturally arise when using orthonormal series expansions.  

Foremost among these problems is determining after how many terms a series expansion 

should be truncated.  In an orthonormal basis function neural network, this determines the 
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complexity of the basis function layer.  This section discusses stopping rules used in this 

dissertation. 

Because the basis functions utilized are multidimensional, the approach 

considered here will be applied to complexity measures developed in Section  3.6. 

3.5.1 Univariate stopping rules 

One-dimensional series expansions require a single truncation point.  In a 

trigonometric series expansion, the truncation point determines the degree of smoothing 

of the fit to the underlying data (Devroye, Györfi et al. 1996).  Including an excessive 

number of terms will result in a model with an overfit, whereas including an insufficient 

number of terms will result in a model with an underfit. 

Univariate stopping rules based on estimates of the MISE have been well studied 

in the statistical literature.  Hart (1985) and Diggle and Hall (1986) both developed 

unbiased estimators of the MISE for Fourier series density estimates.  All terms up to and 

including a cutoff term T  are included in the estimator after the stopping rule is 

implemented.  T  is selected such that it minimizes an unbiased estimator of the MISE; in 

practice, this involves a line search of potential stopping points (Tarter and Lock 1993). 

An MISE-based estimator for classifier systems, such as that introduced in this 

dissertation, can serve the same purpose for orthonormal basis function classifiers.  For a 

one-dimensional problem, a cutoff point could be determined by choosing the set of 

terms, inclusive of all terms up to a given frequency, which minimizes the estimated 

MISE.  This is well-defined for trigonometric series such as the discrete cosine transform 
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(DCT).  It is problematic for other orthonormal series for which frequency is not as 

meaningful. 

3.5.2 Multivariate stopping rules 

Multivariate orthonormal series expansions require a more elaborate formulation 

of stopping rules.  Efromovich’s approach (1999) is typical.  He selects a pair of stopping 

frequencies for a bivariate problem.  This leads to a rectangular frequency window, 

which will contain low-frequency basis functions at one corner and high-frequency basis 

functions at the opposite corner.  For a high-dimensional problem, selecting an ordered n-

tuplet of stopping frequencies specifies a hyperrectangular frequency window that 

consists almost entirely of high-frequency basis functions that are the tensor products of 

one-dimensional low-frequency basis functions.  The complexity of such a model is 

evidence that this method is particularly susceptible to the curse of dimensionality.  It is 

clear that other approaches to selecting multidimensional frequency cutoffs need to be 

considered. 

This dissertation examines several possible methods of selecting basis functions 

in a multidimensional frequency space.  These include a method developed for this 

dissertation that assigns tensor product basis functions to frequency classes according to 

the product of the indices of their component one-dimensional basis functions, resulting 

in a hyperbolic frequency cutoff with a single cutoff parameter.  Other possibilities 

include spherical and linear additive frequency cutoffs. 
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3.6 Scalar indexing of multidimensional tensor product bases 

Most authors to date have studied orthonormal series density estimation and 

classification using a rectangular window.  A stopping rule is used to determine either a 

maximum index value dΜ  for each dimension d  or a single maximum index value Μ  

for all dimensions.  While these approaches may work from problems of low 

dimensionality, they are not appropriate when the dimensionality can cause an 

exponential explosion in the number of coefficients.  Moreover, some of the tensor 

product basis functions included in a rectangular window are enormously complex, 

involving many interacting terms in different dimensions.  Comparatively simple basis 

functions of index 1d dm = Μ +  or 1dm = Μ +  are excluded. 

This section suggests ways in which multidimensional tensor product basis 

function indices can be mapped to a unidimensional index j .  The aim is to construct a 

mapping that enables the application of unidimensional stopping rules and includes 

tensor product basis functions in order of complexity.  Such mappings are dependent on 

the definition of complexity used.  Each of the following primary ordering criteria 

implements a plausible measure of complexity.  When mapping tensor product basis 

functions to a unidimensional index, if two functions have a different primary criterion 

value, the function with the higher value will always be assigned a higher unidimensional 

index j .   
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3.6.1 Linear complexity criterion 

The linear ordering is applicable to both trigonometric and polynomial bases.  It 

uses as its primary criterion r  the sum of the multidimensional indices: 

 
1

D

d
d

r m
=

=∑  (3.20) 

For a polynomial basis, this implements a familiar complexity measure, the 

degree of a multivariate polynomial, plus a constant equal to the number of dimensions. 

3.6.2 Spherical complexity criterion 

The spherical ordering uses as the primary criterion: 

 ( )2

1
1

D

d
d

r m
=

= −∑  (3.21) 

This corresponds to the coefficients of the tensor product of trigonometric polynomials 

after application of the Laplacian. 

3.6.3 Hyperbolic complexity criteria 

3.6.3.1 Definition of zero-crossing order 

Let the zero-crossing order (ZC order) of a univariate basis function with support 

on the interval be the number of subintervals separated by zero crossings, so that the ZC 

order is equal to one plus the number of zero crossings in the interval.  For example, the 

constant basis function has ZC order one, and the half-cosine basis function has ZC order 

two.  The Haar mother wavelet also has ZC order two. 
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3.6.3.2 Hyperbolic complexity criterion for trigonometric and polynomial bases 

The hyperbolic ordering differs from the linear ordering in the primary criterion 

used.  Instead of the sum of indices, the primary criterion is the product of indices: 

 
1

D

d
d

r m
=

=∏ . (3.22) 

Provided that the ZC order for unidimensional basis functions is equal to their index 

values, this is identically the product of the ZC orders of the component functions: 

 
1

D

d
d

r Z
=

=∏ , (3.23) 

where dZ  is the ZC order of the tensor product component in the d th dimension.  The 

primary criterion in Equation (3.23) is equal to the number of regions of alternating sign 

separated by zero crossings in the tensor product basis function. 

3.6.3.3 Hyperbolic complexity criterion for wavelet bases 

For wavelet bases, the hyperbolic complexity criterion needs to reflect that the 

contraction operation on a wavelet effectively doubles its complexity by halving its 

support.  Two daughter wavelets placed side-by-side would, when combined, have the 

same support as their mother wavelet but would have twice as many zero crossings.  A 

multiplicative complexity measure should therefore be inversely related to the support of 

a basis function: 

 
1

D
d

d d

Zr
S=

=∏ , (3.24) 

where dS  is the length of the interval of support for the tensor product basis function 

component in the d th dimension.  Equation (3.24) is also applicable to the special case 



 

 

42

of (3.23) in which all basis functions have support over the entire unit interval.  

Treatment of the ZC order of a univariate wavelet function is thus analogous to that 

defined for trigonometric and polynomial bases above. 

Some wavelets, such as the Daubechies D4 wavelet, have a large number of zero 

crossings, while effectively partitioning the interval into a small number of subintervals 

of alternating sign.  The Daubechies D4 wavelet, for example, has four clearly 

identifiable subintervals of alternating sign, and none of the remaining subintervals 

approach these four in length or amplitude.  Assigning the Daubechies D4 mother 

wavelet a ZC order of four more accurately reflects its capacity to separate classes than 

counting the actual number of zero crossings.  The Daubechies D4 wavelet was therefore 

treated in this dissertation as if it had a ZC order of four.  The practical impact of this is 

to determine the relative complexity of the linear and mother wavelet terms. 

3.6.4 Ordering of functions with the same primary complexity criterion 

Within a class of functions with the same primary criterion value, a secondary 

criterion is used to determine the ordering.  If each variate were equally likely to be 

informative, it might be arbitrary to impose an ordering on basis functions of the same 

complexity.  Assuming that the first variate is the most useful for classification and the 

last variate is the least useful, a condition that using canonical variates as in Section  4.2.3 

aims to meet, it may be preferable first to include tensor product basis functions that 

represent the greatest complexity within the first variate.  Within a class of tensor product 

basis functions with the same primary criterion, therefore, reverse lexicographic ordering 

is used.  This assigns the lowest unidimensional indices to tensor product basis functions 
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with the highest first dimension indices 1m , representing the greatest complexity along 

that dimension. 

3.7 An MISE-based measure for Devroye’s discriminant method 

The method of orthonormal series expansions has been employed extensively for 

density estimation.  As reviewed by Devroye, Györfi et al. (1996), the method was 

initially developed by Cencov (1962) and further developed by numerous authors.  Tarter 

and Lock (1993) and Efromovich (1999) have written books that form a comprehensive 

resource for the practitioner who desires to implement orthonormal series expansions for 

density estimation.  They provide limited insights into how similar methods may be 

applied to multivariate problems and classification problems.  For instance, Efromovich 

shows how separate density estimators for each subpopulation corresponding to a 

particular class may be compared to make a classification decision. 

3.7.1 Model 

It is assumed throughout that ( ){ }, 1, 2,j jϕ =x …  form a basis in L2.  The random 

variable or vector X  and the random variable Y  are assumed to be independent and 

identically distributed (i.i.d.). 

3.7.2 Devroye’s discriminant function 

Devroye et al. (1996) present an elegant discriminant function that, for a two-class 

problem, can be estimated by a single function of all of the available data values.  

Devroye’s discriminant function is given by 
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 ( ) ( ) ( )2 1| 1p P Y Xα = = = −  x x x , (3.25) 

where X  is a random variable or vector and Y  is the random variable for the class 

associated with the data X , and ( )p x  is the probability density of X  at x .  Note that, 

since 

 ( ) ( )0p ≥ ∀x x , 

the discriminant function takes on positive values only where 

 ( ) ( )1| 1|P Y X P Y X= = > ≠ =x x . (3.26) 

This leads to the discrimination rule: 

 ( ) ( )* ˆ1 if 0
0 otherwise,

y
α >

= 


x
x  (3.27) 

where ( )α̂ x  is an estimate of Devroye’s discriminant function ( )α x . 

Devroye et al. prove certain statistical properties of an estimator of ( )α x , but as 

their work on this subject is limited to discrimination of two classes, they do not present a 

multivariate classification system that uses this discriminant function and estimator as its 

foundation.  Developing this estimator and its associated statistical properties into a 

usable method for fitting and selecting orthonormal basis function neural network models 

is the scope of this section. 

3.7.3 Mean of an orthonormal series-based classifier 

The coefficients for the orthonormal expansion of Devroye’s discriminant 

function ( )α x  using the basis ( ){ }, 1, 2,j jϕ =x …  are given by 
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 ( ) ( )j ja dϕ α
Ξ

= ∫ x x x . (3.28) 

This has the estimator (Devroye, Györfi et al. 1996) 

 [ ] ( )
1

1ˆ 2 1
n

j i j i
i

a y
n

ϕ
=

= −∑ x , (3.29) 

where 

 
1 if  Class 1
0 otherwisei

i
y

∈
= 


 (3.30) 

and N  is the number of samples. 

The estimated expansion coefficients ˆ ja  are unbiased estimators of the true 

expansion coefficients ja : 

 ( )

1

1ˆ[ ] [2 1] ( )

[2 1| ] ( ) ( )

[2 ( 1| ) 1] ( )

( ) ( )

ˆ[ ]

n

j i j i
i

j

j

j

j j

E a E y
n

E Y X p d

P Y X p d

d

E a a

ϕ

ϕ

ϕ

α ϕ

=

Ξ

Ξ

Ξ

 = −  

= − =

= = = −

=

=

∑

∫

∫

∫

x

x x x x

x x x x

x x x

 (3.31) 

3.7.4 Variance of ˆ ja  

The variance of ˆ ja  can be estimated from the sample variance. 

Let 

 2( 1) ( )ji i j iu y ϕ= − x  (3.32) 

Then 
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1

1ˆ( ) ( )
n

j ji
i

Var a Var u
n =

= ∑  (3.33) 

( )jiVar u  has the unbiased estimator derived from the sample variance (Mendenhall, 

Wackerly et al. 1990): 

 

m

m

2

1

2

1

1( ) ( )
1

1 ˆ( ) ( )
1

n

ji ji ji
i

n

ji ji j
i

Var u u u
n

Var u u a
n

=

=

= −
−

= −
−

∑

∑
 (3.34) 

Thus, 

 m 2

1

1 1ˆ ˆ( ) ( )
1

n

j ji j
i

Var a u a
n n =

= −
− ∑  (3.35) 

is an unbiased estimator for ( )jVar a . 

3.7.5 The expected value of 2ˆ ja  

 

2

1 1

2
2 2

1 1 1 1

2
2 2

1 1 1

2 2
2

1

1 1ˆ( )

1 1

1 1 [ ] [ ]

1 (2 1) ( )

n n

j ji jl
i l

n n n n

ji ji jl
i l i l

l i l i

n n n

ji ji jl
i i l

l i

n

i j i
i

E a E u u
n n

E u u u
n n

E u E u E u
n n

E y x
n

ϕ

= =

= = = =
= ≠

= = =
≠

=

   =    
   
    
    = +            
 = +  

 = −

∑ ∑

∑∑ ∑∑

∑ ∑∑

∑ 2
2

( )( 1)
j

n n a
n

−+

 

since the jiu  are assumed to be i.i.d. 

 2 2 2 2
2

1

1 1ˆ( ) (2 1) ( )
n

j i j i j
i

nE a E y a
n n

ϕ
=

− = − +  
∑ x  (3.36)  
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Since 2(2 1) 1 ( )i iy y− = ∀ , 

 2 2 2
2

1

1 1ˆ( ) ( )
n

j j i j
i

nE a E a
n n

ϕ
=

− = +  
∑ x  (3.37) 

 2 2 21 1ˆ( ) ( ) ( )j j j
nE a p d a

n n
ϕ

Ξ

−= +∫ x x x  (3.38) 

By construction, this has the unbiased estimator: 

 2 2 2
2

1

1 1ˆ ˆ( ) ( )
n

j j i j
i

nE a a
n n

ϕ
=

−= +∑ x . (3.39) 

This may not be used to estimate 2ˆ( )jE a  if ja  is unknown, but it proves useful in 

estimating 2
ja . 

3.7.6 An estimator for 2
ja  

Efromovich (1999) shows a useful technique for unbiased estimation of the squares of 

coefficients.  This technique is readily adapted for orthonormal series based 

classification.  2
ja  can be stated in terms of ˆ( )jVar a  and 2ˆ( )jE a .  From the unbiased 

estimators for both of these terms follows an unbiased estimator for 2
ja . 

 

2 2

2 2 2

2 2

ˆ ˆ ˆ( ) ( ) ( )

1 1( ) ( )

1 1ˆ( ) ( ) ( )

j j j

j j j

j j j

Var a E a E a

np d a a
n n

Var a p d a
n n

ϕ

ϕ

Ξ

Ξ

= −

 −= + − 
 

= −

∫

∫

x x x

x x x

 

 2 2 ˆ( ) ( ) ( )j j ja p d n Var aϕ
Ξ

= −∫ x x x  (3.40) 
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Since unbiased estimators for both right-hand terms of Equation (3.40) are known, it is 

possible to construct an unbiased estimator for 2
ja  by substituting the estimators for these 

terms: 

 m m2 21

1

ˆ( ) ( )
n

j j i jn
i

a nVar aϕ
=

= −∑ x  (3.41) 

3.7.7 Mean integrated squared error (MISE) of an orthonormal series-based classifier 

Using the uniform weighting function as in Tarter and Lock (1993), the mean 

integrated squared error (MISE) of the estimator ( )α̂ x  is defined as: 

 ( ) ( ) ( ) 2ˆ ˆMISE E dα α α
Ξ

= −      ∫x x x x . (3.42) 

By Parseval’s Identity (Papoulis 1987), this can be written in terms of the expansion 

coefficients: 

 [ ] ( )2

1

ˆ ˆ( ) j j
j

MISE a aα
∞

=

= −∑x  (3.43) 

3.7.8 Variance and squared bias terms of WMISE  

Let { }1 2, ,W w w= …  be a set of zero-one weights that determine whether 

corresponding terms of the expansion { }1 2ˆ ˆ,a a …  contribute to the estimate 

 ( ) ( )
1

ˆ ˆW j j j
j

w aα ϕ
∞

=

=∑x x  (3.44) 

after a truncation of terms, where 1jw =  indicates that the jth term of the expansion is 

included in the estimate, and 0jw =  indicates that the jth term is excluded.  For example, 
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W  could result from truncating a Fourier or related series at a particular frequency, 

setting the jw  corresponding to higher frequencies to zero.  Define 

 ( )ˆW WMISE MISE α=   x . (3.45) 

Then 

 ( ) ( ) 2

1 1

ˆ 1W j j j j
j j

MISE Var w a w a
∞ ∞

= =

= + −∑ ∑ . (3.46) 

Determining the MISE would require the estimation of infinitely many terms in 

Equation (3.46).  Although it is impossible to compute a full infinite series estimate of the 

MISE, a relative MISE measure can be computed quite readily for finite sets J .  This 

relative measure can be used as a tool for model selection.  If the relative MISE is defined 

as 

 { }0, 1,2,j
W W w j

RMISE MISE MISE
= =

= −
…

, (3.47) 

then 

 
( ) ( )

( )

2 2

1 1 1

2

1

ˆ 1

ˆ

W j j j j j
j j j

W j j j
j

RMISE w Var a w a a

RMISE w Var a a

∞ ∞ ∞

= = =

∞

=

= + − −

 = − 

∑ ∑ ∑

∑
. (3.48) 

WRMISE  thus has the unbiased estimator 

 n m ( ) l2

1

ˆW j j j
j

RMISE w Var a a
∞

=

 = −  ∑ . (3.49) 

This is the MISE-based measure that is employed throughout the remainder of this 

dissertation for basis function set selection using a stopping rule and model simplification 

using a single-term exclusion rule. 
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3.7.9 Application of RMISE to model selection: series truncation (stopping) 

The cumulative MISE of a model with ordered terms can be minimized by 

selecting a stopping term that minimizes the RMISE, an equivalent measure up to a 

constant: 

 n( )arg min WRMISE
γγ

Γ = , (3.50) 

where Wγ  is the set of basis functions that includes the γ  ordered terms, i.e. 

 
1,

0,1,2,
0,j

j
w

j
γ

γ
γ

≤
= = >

…  (3.51) 

3.7.10 Application of RMISE to model selection: single term exclusion 

Tarter, Holcomb and Kronmal (1967) initially suggested a single-term inclusion 

rule for term selection.  They subsequently discovered (Tarter and Kronmal 1976; Tarter 

and Lock 1993) that deciding whether to include terms individually leads to inclusion of 

spurious high-order terms.  However, a similar procedure inspired by the single-term 

stopping rule is a promising method of achieving significantly higher levels of 

compression in an orthonormal basis function model. 

Regardless of the method used for stopping, including certain terms in the model 

may increase both the expected MISE and the complexity of the model.  The RMISE is 

the sum of the individual terms in Equation (3.48), each of which corresponds to one 

term in the orthonormal series expansion.  If the estimator corresponding to the jth term is 

positive:  

 m ( ) l2ˆ 0j j jw Var a a − >  
, (3.52) 
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then the expected contribution of the jth term is an increase in the MISE of the model.  

Omitting the term decreases both the complexity of the model and the expected MISE 

error rate. 

3.8 Evaluating the performance of classification methods 

It is important that statistically valid experiments be performed to evaluate the 

performance of any pattern classification algorithm.  Fortunately, there are several 

sources for standard benchmarking problems and techniques.  These sources include the 

University of California Irvine (UCI) machine learning repository (Hettich, Blake et al. 

1998), the University of Toronto’s DELVE suite for statistical evaluation of machine 

learning algorithms (Rasmussen, Neal et al. 1996), and certain problems that have been 

formalized and popularized by authors such as Ripley (1996). 

The strengths and weaknesses of a given algorithm can be probed by comparing it 

to alternative methodologies.  In particular, this dissertation compares orthonormal basis 

function neural networks to the k-nearest-neighbors (KNN) algorithm, backpropagation 

neural networks, and two support vector machine (SVM) algorithms.  KNN is a simple 

and robust classification algorithm which is frequently used as a point of comparison.  

Backpropagation neural networks (Werbos 1974; Rumelhart, Hinton et al. 1986) are 

multilayer perceptrons that use nonorthogonal basis functions of a particular functional 

form, typically a sigmoid function.  Backpropagation is a popular mean squared error 

minimization method that is computationally intensive.  The backpropagation algorithm 

utilizes an iterative nonlinear optimization to adaptively minimize the mean squared error 

of a model.  SVMs employ support vector regularization, a nonlinear regularization 
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method that is applicable to basis expansions (Vapnik 1995; Schölkopf, Burges et al. 

1999).  As is the case for the linear regularization used for orthonormal basis function 

neural networks, support vector regularization minimizes an objective function in the 

space of a basis function expansion.  The techniques differ in many respects, however, 

including the types of objective functions used, the methods of representing basis 

function expansions, and the applicability to particular basis function expansions. 

A problem with these benchmark comparisons is that many of the standardized 

benchmark problems are small databases, containing at most a few thousand exemplars.  

Such databases do not demonstrate the applicability of algorithms to large, real-world 

problems.  The problem of identifying land use changes in the Nile River delta from a 

sequence of ten satellite images (Lenney, Woodcock et al. 1996), described in further 

detail in  Chapter 2 of this dissertation, is a useful platform to test orthonormal basis 

function networks on a larger scale.  It is a real-world database consisting of eight 

different classes and sixty-five-dimensional data vectors.  Orthonormal basis function 

networks were used to classify land use changes on the same database of images 

employed for ARTMAP neural network classification of land use change.  This database 

contains approximately 25,000 pixels for which land use classifications are known.  

Millions of additional pixels must be classified to generate a map of land use changes in 

the study area.  This demands fast testing performance. 

3.8.1 Benchmarking results 

One problem that illustrates certain properties of classifiers is Ripley’s two-

dimensional synthetic database (1994).  This database is popular due to the ease of 
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visualization.  Since the database is synthetic, the Bayes error rate of 8.0% is known.  The 

data consist of 250 exemplars drawn from four bivariate Gaussian distributions.  Two of 

these Gaussians correspond to each of the two classes. 

The orthonormal basis function neural network methodology outlined above 

results in a discrete cosine basis model with 21 basis function units.  Fitting this model is 

a speedy process: all of the computations involved take a fraction of a second on a typical 

Linux workstation.  The error rate on an independent test set is 10.4%, which is 

comparable to the results using various other pattern classifiers reported by Ripley.  As 

seen in Figure  3.5, the contours of the orthonormal basis function neural network model 

(solid lines) closely follow the optimal decision boundary (broken lines) in high-density 

regions of the decision space.  Note that there are large regions in the decision space 

where this model yields the incorrect class; however, the likelihood of data appearing in 

these regions is expected to be very low.  This is a data sampling problem: with a 

hundred or a thousand times more data points, the fact that this is a consistent estimator 

may cause the problem to disappear entirely.  With sparse data requiring a tradeoff 

between being accurate in much of the decision space and being accurate where data are 

most likely to appear, this methodology will select basis functions that optimize the 

model where there is a higher density of data points. 

If less complex decision boundaries were desired, one approach not investigated 

in depth in this dissertation would be to employ an appropriate regularization term to 

penalize models with complex boundaries. 
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Figure  3.5:  Decision boundaries of an orthonormal basis function neural network 
classifier applied to Ripley's synthetic dataset.   The error rate on the test set is 
10.4%.  The Bayes decision criterion (dashed lines) gives an error rate of 8.0% 
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Chapter 4 

Linear Preprocessing and Postprocessing to Improve Orthonormal 

Basis Function Neural Network Models 

4.1 Introduction 

Several important problems arise when the orthonormal basis function classifiers 

of  Chapter 3 are applied to classification tasks.  This chapter considers rotation of data, 

dimension reduction, and extension of a two-class algorithm to multiple classification. 

Rotation of data prior to fitting with an orthonormal basis function needs to be 

considered because the functions in the system are fixed.  The model is dependent on the 

orientation of the data with respect to the basis functions.  Because of this, it is possible 

that changes in the orientation will have a significant impact on the goodness of a model 

as measured by classification rate.  Common approaches to data rotation and dimension 

reduction include Principal Components Analysis (PCA) and Canonical Variate Analysis 

(CVA) (Mardia, Kent et al. 1979).  This chapter considers both of these methods and 

introduces Extended CVA, which combines CVA with PCA when the number of 

dimensions equals or exceeds the number of classes. 

The number of dimensions used as input to an orthonormal basis function network 

can also be an important factor in the goodness of a model.  If too few dimensions are 

used, the discarded dimensions may contain important information.  Using too many 

dimensions can also degrade the performance. 
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As reviewed by Bentler and Yuan (1996), one approach to dimension reduction is 

to test the hypothesis that the smallest q  eigenvalues of the data covariance matrix Σ  are 

equal for 2,3, ,q D= …  using Bartlett’s test (Bartlett 1954).  However, in practice it is 

often the case that few dimensions have statistically identical eigenvalues and can be 

eliminated in this way.  Bentler and Yuan observe that instead, eigenvalues of real data, 

when plotted, tend to fall sharply from the largest values, then trend linearly toward the 

smallest value, and that Cattell’s scree test (1966) makes use of this to select principal 

components that are most likely to bear useful information based on their eigenvalues.  

The portion of the eigenvalue plot that trends linearly after the sharp drop is designated as 

“scree”, excess dimensionality that can be eliminated from a model.  A failing of this test 

is that it is a subjective visual test not easily implemented as part of an algorithm.  

Several automated methods for performing a scree test have been proposed (Bentler and 

Yuan 1996).  This chapter proposes another such test, designed to be less stringent in its 

criterion for an eigenvalue to be considered scree. 

A third problem investigated in this chapter is that of extending a two-class 

method to multiple classes.  Devroye’s discriminant estimator yields appropriate decision 

boundaries for two-class problems, but such a simple decision rule is insufficient in a 

multiclass context.  Masking (Hastie, Tibshirani et al. 2001) can occur, leading to poor 

performance when bivariate decision rules are extended to three or more classes.  One 

solution is to employ linear discriminant methods appropriate for multiclass problems on 

bivariate discriminant estimators.  This chapter shows that linear discriminant analysis 

(LDA) postprocessing is equivalent to optimal scoring criteria that minimize the average 
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squared residual (ASR) of a model when the underlying model is fixed and only the 

postprocessing parameters are permitted to change. 

4.2 Linear preprocessing for data orientation and dimension reduction 

4.2.1 Principal components analysis (PCA) 

4.2.1.1 Computation of principal components 

Principal components analysis (PCA) computes an ordered set of orthonormal 

vectors onto which a data matrix X  can be projected such that the variance of the 

projection onto each successive vector in the set is maximal (Ripley 1996). 

Ripley (1996) gives the following simple explanation for how these may be 

obtained for an n p×  data matrix X  consisting of row vectors ix : 

This is done by taking the singular value decomposition of the data matrix 

X  (Golub and Van Loan 1989) T=X UΛV , where Λ  is a diagonal 

matrix with decreasing non-negative entries ( iλ ), U  is an n p×  matrix 

with orthonormal columns, and V  is a p p×  orthogonal matrix.  Then the 

principal components are the columns of XV . 

The first q  columns of XV  contain the first q  principal components of X , which 

maximize the variance of the projection of X  onto q  dimensions. 

4.2.1.2 Use of principal components for pattern recognition 

Because the principal components of X  are not invariant to linear scaling of X , 

it is important for the dimensions of X  to be in comparable units.  Where the units of X  
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are not directly comparable, it is customary to rescale the columns of X  to have unit 

variance and zero mean. 

Let qV  be the matrix consisting of the first q p≤  columns of V : 

 q
q

 
=  

 

I
V V

0
, (4.1) 

where qI  is the q q×  identity matrix.  For any such q , *
q q=X XV , the first q  unscaled 

principal components of X , can be used as instead of X  itself as the input data for neural 

networks and machine learning algorithms.  For the remainder of this dissertation, 

PCAq , where q  is given as an integer value, will denote the transformed input data 

matrix *
qX  obtained in this manner. 

Results of using PCAq  as the input to orthonormal basis function networks are 

reported later in this chapter, where this method is also compared to using the 

untransformed data X  and other linear transformations of X . 

Note that PCA does not take into account the class labels iy  associated with the 

rows of X .  This is a shortcoming of the use of PCA for classification problems.  The 

directions which explain the maximal variance in the input vectors are not necessarily the 

directions that are most useful for classification.  For classification problems, canonical 

variates (Mardia, Kent et al. 1979), to be discussed in Section  4.2.3, may be a more 

appropriate linear transformation of the data matrix.  
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4.2.2 An automated scree test for principal component dimensionality 

A problem that often occurs with PCA is that the principal components with the 

largest eigenvalues are helpful for building a model while the principal components with 

the smallest eigenvalues act as distractors.  As reviewed by Bentler and Yuan (1996), 

Cattell (1966) developed a scree plot method for determining the number of principal 

components to keep in a dimension reduction procedure.  The method is so named 

because the plot of eigenvalues often resembles a steep mountain slope with scree or 

rubble collected at the bottom.  The larger eigenvalues that comprise the steep slope are 

interpreted in Cattell’s method as “important”, and the corresponding principal 

components are kept.  Cattell observed that the remaining eigenvalues formed a shallow 

slope that was approximately linear.  His test is a visual test that requires the user to 

identify the elbow of the scree plot, the point at which the steep slope ends and the scree 

begins. 

Bentler and Yuan (1996) developed a test for the linearity of the smallest 

eigenvalues.  While useful, this test may be sensitive to small nonlinearities in the scree.  

In this section, an alternative test for the approximate linearity of eigenvalues is 

proposed.  This test determines whether an individual eigenvalue is consistent with a 

linear trend in eigenvalues by measuring its influence (Weisberg 1985) on a linear fit to 

the sequence of eigenvalues.  This is a formalization of Cattell’s scree test that replaces 

the subjective analysis of plots with a simple objective test for the similarity of an 

eigenvalue to the trend in successive eigenvalues.  

A standard measure of influence is Cook’s distance (Cook 1977), 
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 ( )( ) ( ) ( )( )
2

ˆ ˆ ˆ ˆ

ˆ'

T
T

i i
iD

p σ

− −
=

β β V V β β
, (4.2) 

where ' 2p =  is the number of parameters estimated in linear regression on a single 

scalar variable, 0

1

ˆ
ˆ

ˆ
β
β

 
=  
  

β  contains the estimated slope ( 1̂β ) and intercept ( 0β̂ ) 

parameters, and ( )
ˆ

iβ  is the estimated parameter vector when the i th data point is omitted 

from the regression on the data matrix V . 

Let { }iλ  be the set of eigenvalues of a data covariance matrix in descending order 

of magnitude.  Let i∆  be the influence of  

 [ ]1i iλ=v , (4.3) 

corresponding to the i th eigenvalue iλ , on the linear regression model 

 ,T
j j jy e j i= + ≥v β  (4.4) 

of the eigenvalues with index greater than or equal to i .  If  i∆  is large, this is indicative 

of an eigenvalue that is much larger or smaller than the trend of successive eigenvalues.  

Since eigenvalues that are much larger than typical eigenvalues will have large values of 

i∆ , it may be possible to use this as a measure of the importance of an eigenvalue in a 

way that corresponds to visual interpretation of a scree plot.  Let elbowi  be the index of the 

first eigenvalue that does not exceed a predefined influence threshold: 

 ( )arg min1elbow i elbowi
i = ∆ < Γ  (4.5) 
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It is hoped that appropriate selection of elbowΓ  will result in automated determination of 

scree plot truncation points similar to those obtained by visual inspection.  

Bentler and Yuan (1996) demonstrate their linear trend (LT) method for PCA 

model selection on two published psychological databases.  The Lord (1956) database, as 

republished by Bentler and Yuan, concerns student performance on a variety of 

psychological tests yielding 15 variables.  The eigenvalues of the covariance matrix are 

plotted in the upper half of Figure  4.1.  The lower half of the figure plots the 

corresponding values of i∆ .  Bentler and Yuan conclude that “the last 13 eigenvalues do 

not show a linear trend as assessed by the LT- 2
2qχ −  test statistic, while the last 12, and 

certainly the last 11, eigenvalues do exhibit a linear trend.”  Using the influence-based 

method of this section, a wide range of values for elbowΓ  leads to the conclusion that the 

last 11 eigenvalues are scree.  This moreover agrees with a visual inspection of the scree 

plot, in which either the fourth or fifth eigenvalue would be determined to be the elbow 

location. 
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Figure  4.1:  Automated scree plot analysis for the psychological test data of Lord 
(1956).  A wide range of thresholds elbowΓ  lead to the determination that 5elbowi = .  
This agrees with both a visual inspection of the scree plot and the linear trend (LT) 
eigenvalue analysis method of Bentler and Yuan (1996). 

The 24-dimensional psychological test data of Holzinger and Swineford (1939), 

also as published in Bentler and Yuan (1996), are problematic for both a visual scree test 

and the automated method based on the influence measure i∆ .  The location of the elbow 

in the sequence of eigenvalues is ambiguous, as seen in Figure  4.2.  The threshold range 

for i∆  that best corresponds to visual selection of the elbow may be 

0.398 0.839elbow< Γ < , which places the elbow at the ninth eigenvalue.  The LT method 

(Bentler and Yuan 1996) finds a linear trend commencing with the twelfth eigenvalue. 



 

 

63

From these preliminary studies, it appears that an automated scree test method 

based on the influence of eigenvalues corresponds well with the visual scree plot method.  

A threshold value such as 0.5elbowΓ =  may lead to the selection of components that are 

reasonably close to those selected by visual inspection and the existing LT method.  

Further studies might both determine the statistical properties of such a threshold and 

investigate whether a single value for elbowΓ  is applicable to a wide variety of datasets 

(Section  7.2.3).  Where an automated scree test is used on the Adult dataset later in this 

dissertation, the threshold 0.5elbowΓ =  is employed. 
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Figure  4.2:  Automated scree plot analysis for the psychological test data of 
Holzinger and Swineford (1939).  A threshold value 0.839elbowΓ >  is aggressive, 
discarding components that a visual inspection of the scree plot would likely include.  
More reasonable elbow points are given by the threshold ranges 
0.398 0.839elbow< Γ <  and 0.071 0.398elbow< Γ < .  Neither is far from that given by the 
linear trend (LT) eigenvalue analysis method of Bentler and Yuan (1996).  The 
middle range of threshold values 0.398 0.839elbow< Γ <  may agree best with a visual 
inspection of the scree plot. 

4.2.3 Canonical variates 

Canonical variates, like principal components, are a linear transformation of the 

input matrix X .  Whereas principal components are selected to maximize the variance of 

the input data with respect to the components, canonical variates are selected to maximize 

the correlation between the input data and the output classes.  The input data are 
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represented as rows of an input matrix X , and the output classes are represented as a 

matrix of dummy zero-one class indicator variables W , where 

 ,

1 if the th exemplar  class  
0 otherwisei j

i j
w

∈
= 


 (4.6) 

(Mardia, Kent et al. 1979). 

Canonical variates can be obtained by performing a canonical correlation analysis 

on the input matrix X  and the class indicator matrix W  given in (4.6).  The first 

canonical correlation vectors 1a  and 1b  maximize the correlation between 1Xa  and 

1Wb .  Subsequent canonical correlation vectors are chosen to maximize the correlation 

between qXa  and qWb  subject to the condition that qXa  is uncorrelated with the 

previous canonical correlation variables 1 1.. q−Xa Xa  (Mardia, Kent et al. 1979).  Let 

 [ ]1 2 D=A a a a" . (4.7) 

Then the column vectors of XA  are the canonical variates.  

Because of the relationship between canonical variates and linear discriminant 

analysis (discussed further in Section  4.3.1), it is standard to scale the canonical 

correlation vectors qa  such that each canonical variate qXa  has unit within-class 

variance (Ripley 1996). 

4.2.4 Extended canonical variates 

A key limitation of canonical variates as inputs to an orthonormal basis function 

neural network is that the number of canonical variates is limited to 1C − , where C  is 

the number of classes in the dataset.  In some cases, it is advantageous to present inputs 
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that have higher dimensionality than canonical variate analysis can provide.  This may be 

the case when the number of classes is small relative to the number of input dimensions. 

Extended canonical variates are the set of canonical variates augmented by the 

principal components of the orthogonal complement of the canonical vectors.  These 

principal components represent the directions in which the data vary the most, yet the 

weighted means of the classes are equal.  Although these components are not useful for 

linear classification in the original problem space, they can potentially improve the ability 

of other methods, including orthonormal basis function networks, to distinguish between 

classes. 

Extended canonical variates are not invariant with respect to the scale of the 

unrotated data, although the first 1C −  components are.  The remaining components, 

derived using PCA, will vary if the dataset is rescaled prior to computing the extended 

canonical variates.  Unless the relationship between the scales of dimensions in the 

original data is known and meaningful, it is appropriate to scale the original data to have 

mean 0µ =  and standard deviation 1σ = . 

4.2.4.1 Obtaining extended canonical variates 

Let A  be the matrix of canonical variate projection column vectors.  The 

extended canonical variates are the canonical variates XA  augmented by the principal 

components of the canonical variate transform residual matrix ⊥XA , where the vectors in 

⊥A  are orthonormal to preserve the scale of X . 

The principal components of ⊥XA  may be obtained by direct computation of ⊥A .  

It is equivalent to find the principal components of  
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 ( )' +X = X I - AA , (4.8) 

where ( ) 1−+ T TA = A A A  is the standard Moore-Penrose matrix pseudoinverse , since 

+I - AA  spans the null space of A . 

The number of extended canonical variates is identical to the rank of X .  If fewer 

variates than this number are desired, those with the smallest PCA coefficients are 

discarded. 

For the remainder of this dissertation, CVAq, where q is given as an integer value, 

will denote the first q extended canonical variates of X : 

 *CVA [ ] q
qq  

= =  
 

' I
X XA X V

0
, (4.9) 

where qI  is the q q×  identity matrix.  CVAq contains the first q columns of 

* [ ]= 'X XA X V . 

4.3 Postprocessing to improve multiclass models 

Any classification algorithm that assigns class scores based on a vector of input 

variables can be formulated as a regression technique if the class scores are taken to be 

the result of regressing class indicator variables on the input data.  Hastie, Tibshirani et 

al. (1994) show that the problem of optimal scoring, selecting the linear transformation of 

class scores that minimizes the least squares error from the correct classification, is 

equivalent to performing linear discriminant analysis (LDA) on the class scores. 

Hastie et al. make an argument for implementing optimal scoring for 

classification problems involving three or more classes whenever an algorithm is capable 
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of providing class scores.  They show that other methods that can yield similar 

discrimination boundaries for two-class problems, such as Softmax on linear regression 

models (Bridle 1990), fail to find optimal linear decision boundaries for multiclass data. 

4.3.1 Linear Discriminant Analysis (LDA) 

Let XA  be the canonical variates of the input matrix X , where A  is the linear 

transformation matrix of (4.7) in which each qXa  has unit variance. 

In this canonical variate space, Mahalanobis distance is identical to Euclidean 

distance to the class means (Ripley 1996).  If the class prior probabilities are equal, linear 

discriminant analysis (LDA) assigns to a vector ix  the estimated class ˆiy  whose linearly 

transformed class mean T
yµ A  is nearest T

ix A .  If the class prior probabilities yπ  are not 

equal, the linear discriminant applies a correction factor adding 2 log yπ−  to the distances 

to the class means. 

This method of determining the linear discriminant shows the connection between 

LDA and canonical variates analysis (CVA), which in turn can be thought to be an 

application of canonical correlation analysis (CCA).  The LDA model that this finds is 

the standard LDA model consisting of a multivariate Gaussian for each class with a 

single covariance matrix common to each Gaussian.  The Gaussians differ in their means 

and amplitudes. 

4.3.2 Optimal scoring for an orthonormal basis function model with fixed coefficients 

Once the coefficients of an orthonormal basis function network are fixed, it may 

be possible to improve the decision boundaries by optimal scoring (Hastie, Tibshirani et 
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al. 1994).  Let kθ  be a function that assigns scores to the class labels, and consider the 

model  

 ( ) T
k kzθ x∼ β , (4.10) 

where the class label z  is transformed by the optimal scoring function kθ  and the 

variates x  are multiplied by the weight vector kβ  to minimize the average squared 

residual (ASR).  Hastie, Tibshirani et al. give this as: 

 2

1 1

1 ( ( ) )
C N

T
k i i k

k i
ASR z

N
θ

= =

= −∑∑ x β  (4.11) 

Mardia, Kent et al. (1979) show the equivalence between this optimal scoring problem 

and linear discriminant analysis (LDA) (Section  4.3.1).   

Flexible discriminant analysis (Hastie, Tibshirani et al. 1994) makes it easy to 

extend the model of (4.10) and (4.11) to a partial basis expansion ( )ixϕ : 

 ( ) ( )T
k kzθ x∼ ϕ β  (4.12) 

 2

1 1

1 ( ( ) ( ) )
C N

T
k i i k

k i

ASR z
N

θ
= =

= −∑∑ xϕ β  (4.13) 

Minimizing the average squared residual in this case requires a full multivariate 

regression on the expanded basis terms ( )ixϕ .  Depending on the number of terms under 

consideration, this can be computationally intensive. 

Instead of performing a full regression on the expanded basis terms, it is possible 

to estimate the coefficients of these terms using Devroye’s discriminant estimator or an 

equivalent class density estimator and fix the coefficients.  Let  
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 (4.14) 

be the matrix of coefficients for Devroye’s discriminant estimator.  If Α  is fixed, the 

model of (4.12) can be modified to require a regression only on the outputs of the 

orthonormal basis function classifier developed in the previous chapter:  

 
( ) [ ( )]  , or equivalently

ˆ( )

T T
k k

T
k k

z

z

θ
θ

Α x

y

∼
∼

ϕ β

β
 (4.15) 

This model has average squared residual: 

 2

1 1

1 ˆ( ( ) )
C N

T
k i i k

k i
ASR z

N
θ

= =

= −∑∑ y β  (4.16) 

This clearly can be minimized in exactly the same way as (4.11), substituting ˆ T
iy  for T

ix .    

The results of Mardia, Kent et al. and Hastie, Tibshirani et al. therefore show that this 

particular optimal scoring problem is solved by performing a procedure equivalent to 

LDA on the estimated class indicators ˆ iy  and the associated actual class indicators iy . 

In fact, it is clear that ˆ iy  may always be substituted for ix  in this manner 

whenever a classification algorithm estimates a class indicator vector.  Performing LDA 

on the estimated class indicator vectors minimizes the average squared residual subject to 

the constraint that the coefficients of the underlying model are fixed by some alternate 

methodology.  Note that in most cases it would be possible to achieve a lower average 

squared residual without this constraint by performing a full regression to find the 
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coefficients of the underlying model, but the computational expense of doing so might be 

prohibitive if the number of terms under consideration is large. 

4.4  ANOVA models of preprocessing and postprocessing performance 

The method used for preprocessing, the dimensionality of the preprocessed data, 

and the method used for postprocessing all potentially impact the performance of an 

orthonormal basis function network.  The combination of methods to use for 

benchmarking was selected by estimating the effect that each choice had on the 

classification error rate. 

4.4.1 Procedure 

Analysis of Variance (ANOVA) (Winer, Brown et al. 1991) is a standard 

statistical tool for linear modeling of the effects of known factors in an experimental 

setting.  In this experiment, the classification error rate of an orthonormal basis function 

network was modeled as a linear function of four factors and their interactions.  ANOVA 

attributes a portion of the total variance in the performance to each variable and 

interaction term, with the remainder accounted for as residual. 

The factors under consideration included the preprocessing method, preprocessing 

dimensionality, postprocessing method, and basis used.  The levels of these factors are 

summarized in Table  4.1.  These experiments were constructed using a four-way full 

factorial design, meaning that every possible combination of factor levels was 

represented.  ANOVA models based on this design were used to evaluate the 

performance of orthonormal basis function networks on benchmarks from the DELVE 
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suite (Rasmussen, Neal et al. 1996; Hettich, Blake et al. 1998) under the variety of 

conditions represented by the factors. 

 

Factor Levels 

Preprocessing method CVA, PCA 

Preprocessing 

dimensionality 

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 

Postprocessing method LDA, Maximum (no postprocessing) 

Basis Cosine (discrete cosine basis with zero-crossing cutoff 

criterion), 

Daubechies (second-order Daubechies wavelets with 

scale product cutoff criterion), 

Legendre (polynomial basis with polynomial-order 

cutoff criterion) 

Table  4.1:  Factors and treatment levels for four-way ANOVA modeling of 
orthonormal basis function neural network performance on DELVE development 
benchmarks.  In the Maximum treatment level, the class selected is that with the 
maximum value of the corresponding one-vs.-many discriminant at a particular ix . 

The ad hoc selection of cutoffs reflects that exploratory data analysis on these 

databases did not yield significant differences between cutoffs (hyperbolic, linear, and 

spherical) within each basis, likely because the data were inadequate for this purpose.  

Therefore, a single representative cutoff was selected for each basis.  It is possible that 

the cutoff selected could be a significant factor in classification performance on other 

databases.  The hyperbolic cutoff, which uses the ZC order of tensor product basis 

functions, was selected for the cosine and Daubechies bases.  The linear cutoff, which 
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corresponds to multivariate polynomial order, was selected for the Legendre basis.  It 

should be noted that results in this chapter and following chapters showing comparative 

performance of bases are in fact comparing these particular ad hoc combinations of basis 

and cutoff, as summarized in Table  4.1. 

The DELVE benchmark databases consist of between four and eight disjoint 

training sets.  These were considered to be replicates for the sake of this analysis.  

Although the training sets are disjoint, they do not meet the independence requirement for 

ANOVA analysis since the same training sets are used for each and every combination of 

factor levels.  This approach is thus deficient because the replicates are correlated across 

all treatments.  While a repeated-measures ANOVA analysis might be more appropriate 

for these data, the results are very similar to those using standard ANOVA.  Repeated-

measures ANOVA is moreover known to be sensitive to violations of its assumption of 

sphericity (Keppel 1991; Winer, Brown et al. 1991), while standard ANOVA is relatively 

robust.  Sphericity is the property that the group covariance matrix 

2
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 has when 2 2 2j k jks s s+ − , the variance in the difference between 

the groups, is identical for all group pairings { }, |j k j k≠ . 

4.4.2 Results 

4.4.2.1 Letter recognition database 

The letter recognition task is classification of a sixteen-dimensional vector of 

letter attributes as one of twenty-six capital letters.  Frey and Slate (1991) generated this 
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database by distorting twenty fonts and taking various metrics.  DELVE splits the 

database into six disjoint training sets and six disjoint test sets.  It is meant to be run three 

times, with each run doubling the number of training exemplars available.  In the first 

run, there are 390 training exemplars per replicate; in the second, 780 exemplars; and in 

the third, 1,560 exemplars.  Figure  4.3, Figure  4.4, and Figure  4.5 show the ANOVA 

models resulting from these three runs.  The Shapiro-Wilk test as implemented by the R 

Development Core Team (2003), a standard normality test that has been extended to be 

applicable to a wide range of sample sizes, was used to inspect the residuals.  With 780 or 

1,560 exemplars per replicate, the four-way ANOVA models without interaction have 

residuals statistically indistinguishable from the normal distribution.  The best models 

including interaction terms for all three runs have this same property.  ANOVA therefore 

appears to be appropriate for characterizing these data.  The ANOVA models show that 

each of the four factors under consideration is statistically significant at .05p = . 

CVA preprocessing results in a lower mean classification error rate than does 

PCA on the letter recognition database.  It is also clear that the number of dimensions is 

significant.  However, on the 390-exemplar run, there was no significant difference 

between the best observed performance (for twelve dimensions) and anything else in the 

range of ten to sixteen dimensions.  On the 780-exemplar and 1,560-exemplar runs, there 

was no significant difference between the best observed performance (for sixteen and 

fifteen dimensions, respectively) and anything else in the range of twelve to sixteen 

dimensions.  These data are insufficient to determine whether any reduction in 

dimensionality is beneficial for application of orthonormal series classifiers to the letter 
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recognition benchmark.  It is clear that reducing the dimensionality to nine or less is 

detrimental in this case. 

For postprocessing, LDA consistently results in better performance than simply 

taking the class with the highest score. 

The basis used (in combination with the ad hoc selected cutoff) also proved to be 

a significant factor.  For the letter recognition problem, the cosine basis resulted in the 

lowest mean error rate, followed closely by the Legendre basis. 
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Figure  4.3:  Multiple comparison of four-way ANOVA model factors for the 
DELVE letter recognition task with 390 training exemplars.  The classification error 

rate has global mean 0.476µ = , standard deviation 0.100σ = , and 0.209σ
µ

= .  

Residuals account for 12.6% of the total variance. 
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Figure  4.4:  Multiple comparison of four-way ANOVA model factors for the 
DELVE letter recognition task with 780 training exemplars.  The classification error 

rate has global mean 0.429µ = , standard deviation 0.093σ = , and 0.217σ
µ

= .  

Residuals account for 11.1% of the total variance. 
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Figure  4.5:  Multiple comparison of four-way ANOVA model factors for the 
DELVE letter recognition task with 1,560 training exemplars.  The classification 

error rate has global mean 0.397µ = , standard deviation 0.085σ = , and 0.215σ
µ

= .  

Residuals account for 10.3% of the total variance. 

4.4.2.2 Image segmentation database 

The image segmentation task is classification of a sixteen-dimensional vector of 

attributes as one of seven classes: brickface, sky, foliage, cement, window, path, or grass.  

The attributes are various measures taken from a 9-pixel region of a color image.  The 

database was created by the University of Massachusetts Vision Group.  DELVE splits 
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the database into eight disjoint training sets and a common test set of 1,190 exemplars.  

This database is meant to be run three times, with each run doubling the number of 

training exemplars available.  In the first run, there are 70 training exemplars in eight 

replicates; in the second, 140 exemplars in eight replicates; and in the third, 280 

exemplars in four replicates. 

Figure  4.6, Figure  4.7, and Figure  4.8 show the ANOVA models resulting from 

these three runs.  The residuals of these models are quite high, so much of the variance in 

performance is not explained.  A Shapiro-Wilk test of the residuals rejects the hypothesis 

of normality for ANOVA models with or without interaction effects, indicating that they 

may not be appropriate for the data corresponding to 70 training exemplars ( 710p −< ) or 

280 training exemplars ( 32 10p −< × ). 

From the 140-exemplar run (Figure  4.7), it is possible to conclude that the 

preprocessing method and dimensionality both have a significant effect on performance.  

As with the letter recognition database, CVA results in a lower mean error rate than PCA.  

The best error rate, achieved with thirteen dimensions, is statistically indistinguishable 

from anything between ten and sixteen dimensions, inclusive.  It is not possible to 

conclude whether a reduction in dimensionality could be beneficial. 

The image segmentation database is inconclusive about postprocessing methods.  

The differences observed were not significant except in the 70-exemplar model, the 

validity of which is questionable. 
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The cosine and Legendre bases showed an advantage over the Daubechies basis 

on the 140-exemplar data, but they showed no significant advantage over each other.  

These observations are contradicted by the 70-exemplar model. 
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Figure  4.6:  Multiple comparison of four-way ANOVA model factors for the 
DELVE image segmentation task with 70 training exemplars.  The classification 

error rate has global mean 0.321µ = , standard deviation 0.071σ = , and 0.221σ
µ

= .  

Residuals account for 65.6% of the total variance. 
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Figure  4.7:  Multiple comparison of four-way ANOVA model factors for the 
DELVE image segmentation task with 140 training exemplars.  The classification 

error rate has global mean 0.345µ = , standard deviation 0.080σ = , and 0.232σ
µ

= .  

Residuals account for 73.9% of the total variance. 
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Figure  4.8:  Multiple comparison of four-way ANOVA model factors for the 
DELVE image segmentation task with 280 training exemplars.  The classification 

error rate has global mean 0.338µ = , standard deviation 0.087σ = , and 0.258σ
µ

= .  

Residuals account for 71.8% of the total variance. 

4.4.3 Conclusions 

This study indicates that it may be advantageous to use CVA, rather than PCA, as 

the preprocessing component of an orthonormal basis function classification system.  

Such a limited selection of databases does not give a good estimate of the number 

dimensions of preprocessed data to keep.  In these particular databases, there was no 
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significant disadvantage to utilizing all of the dimensions available from preprocessing 

with CVA or PCA. 

 LDA postprocessing for optimal scoring resulted in a significant reduction in the 

error rate for the letter recognition task.  At worst, LDA postprocessing with adequate 

data should result in approximately the same error rate as a winner-takes-all scoring 

system.  Since there is little cost or risk to using LDA as a postprocessing method, it is 

probably advantageous to do so as a matter of course for multiclass problems. 

It is clear from this analysis that the choice of basis for an orthonormal basis 

function classifier can have a significant effect on the results.  For the data under 

consideration, the Daubechies basis was consistently outperformed by the other two 

bases.  However, it is possible to construct data for which the Daubechies basis is 

optimal.  The best basis for a particular problem is a characteristic of that problem, so it is 

difficult to generalize this result. 

The following chapter of this dissertation will reflect these empirical results 

unless otherwise noted, although for some problems, these may not be the best choices.  

All preprocessing will be done with CVA, and the maximum number of dimensions will 

be retained when feasible.  LDA will be applied uniformly to discriminant estimates for 

multiclass problems.  These options define a reference system for a particular basis.  The 

only factor that will be varied among orthonormal basis function networks is the basis 

itself.  There are inadequate data to probe the cutoff method, and as a matter of 

convenience, it is not varied.  Each basis uses the cutoff assigned ad hoc in Table  4.1. 
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Chapter 5 

A Comparative Study of Classification Performance 

5.1 Introduction 

This chapter is an in-depth analysis of DELVE benchmarking results for a variety 

of classification methods including linear models (LDA), K-nearest neighbors (KNN), 

classification trees (CART), neural networks using backpropagation of error (backprop), 

and support vector machine kernel methods (SVM) as well as orthonormal basis function 

neural networks.  DELVE (Rasmussen, Neal et al. 1996) compares such classifiers using 

statistically valid methodologies applied to established databases. 

5.1.1 Orthonormal basis function neural networks 

 This section summarizes the specific steps involved in orthonormal basis 

function classification.  Flowcharts of the orthonormal basis function neural network 

training and testing procedures described here are shown in Figure  5.1 and Figure  5.2. 

The data are prepared by computing all extended canonical variates.  For some 

databases this may yield too many variates, for instance more than twenty.  In that case 

an automated scree test may be applied to the extended variates (those obtained through 

PCA of the residual) for dimension reduction. 

An initial set of orthonormal basis functions is selected by using the ordering 

criteria in Section  3.6 to determine the first N  basis function, where N  is the number of 

training data points. 
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For each class, the corresponding coefficients of the orthonormal series expansion 

of Devroye’s discriminant function (3.25) are estimated (3.29), as are the associated 

variance (3.35) and squared bias terms (3.41). 

The orthonormal series is truncated to minimize its mean integrated squared error 

(MISE) as in Equation (3.50), and individual terms that increase the expected MISE of 

the model are also eliminated (3.52). 

For multiclass problems, LDA is employed to determine decision boundaries 

between the estimated discriminant functions for the various classes (Section  4.3). 
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Figure  5.1: Flowchart of orthonormal basis function network training procedure. 

Eliminate individual terms that increase the 
expected MISE (Section  3.7.10) 

More than 
two classes?

Start 

Compute all extended canonical variates (Sections 
 4.2.3 and  4.2.4) 

Apply automatic scree test to 
extended variates for dimension 
reduction (Section  4.2.2) 

More than 
20 variates?

Select initial set of N orthonormal basis functions, 
where N is the number of training data points 
(Sections  3.4- 3.6) 

Estimate coefficients of Devroye’s discriminant 
function for each class (one-class-versus-many) 
(Section  3.7.2) 

Truncate series to minimize estimated MISE 
(Section  3.7.9) 

Apply LDA to determine decision 
boundaries between estimated class 
discriminants (Section  4.3) 

Finish: model is trained

YES

YES 

NO 

NO 
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Figure  5.2:  Flowchart of orthonormal basis function network testing procedure. 

5.1.2 Backpropagation neural networks 

Multilayer perceptron networks using backpropagation of error (backprop) for 

training are a system initially developed by Werbos (1974) and implemented in this 

Start 

For the testing data, compute the variates selected 
during training 

Estimate Devroye’s discriminant function for each 
class (1-vs.-many) using the model terms 
remaining after training truncation (Section  3.7.2) 

More than 
two classes?

Select a class using LDA to determine 
decision boundaries between estimated 
discriminants  (Section  4.3) 

Finish: model is tested 

YES 

NO 

Compare Devroye’s discriminant function 
estimates for the two classes directly 
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dissertation with the Netlab toolbox (Nabney and Bishop 2001).  A three-layer perceptron 

utilizes hyperbolic tangent hidden layer nodes and linear output layer nodes.  The number 

of output layer nodes is equal to the number of classes for a particular classification task. 

The number of hidden layer nodes hJ  is determined by a divide-and-conquer 

search to minimize the generalized cross-validation (GCV) criterion.  For each potential 

value j  of hJ , a backprop network containing j  hidden layer nodes is trained for 1,000 

iterations on the training data set.  hJ  is selected among these candidates to minimize the 

GCV (Craven and Wahba 1979; Friedman 1991; Stone, Hansen et al. 1997): 

 2arg min
( 1)1

j
h

j

MSE
J

a j
N

=
− −  

, (5.1) 

where jMSE  is the mean squared error 

 2

1

1 ˆ[ ( ) ]
N

j i i
i

MSE f y
N =

= −∑ x  (5.2) 

of the backprop network over the training set { }ix  with corresponding output class 

indicator function values { }iy .  2.5a =  is a typical value for the GCV hyperparameter 

(Stone, Hansen et al. 1997) and is used for model selection for this backprop 

implementation. 

The selected backprop network with hJ  hidden layer nodes is trained to a total of 

5,000 iterations before being applied to the DELVE test data. 
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5.1.3 Classification and regression trees (CART) 

Classification and Regression Trees (CART) are a family of decision tree 

methods developed by Breiman, Friedman et al. (1984).  A tree is constructed by 

progressively splitting the data into disjoint clusters by minimizing a split criterion at 

each step.  The CART method used in this comparative study uses one-dimensional 

splitting to minimize the tree’s total Gini impurity, defined at each node as: 

 ( )( )
1

ˆ( ) 1 |
C

c

i N P y c N
=

= − = ∈∑ x , (5.3) 

where ( )ˆ |P y c N= ∈x  is the proportion of ( ), yx  pairs at node N  that are associated 

with class c  (Duda, Hart et al. 2000). 

The full classification tree is computed for each of ten leave-out-ten-percent 

cross-validation samples to estimate the optimal pruning level.  The final model is 

obtained by applying this pruning level to a full classification tree computed using all of 

data points. 

In this comparative analysis, dimension reduction was not used prior to fitting the 

classification trees. 

5.1.4 K-nearest neighbors (KNN) 

As reviewed by Agrawala (1977), the K-nearest neighbors (KNN) method was 

first described by Fix and Hodges (1951).  It remains a popular method for pattern 

classification due to its simplicity and statistical consistency.  That many statistical 

properties of KNN are known also makes KNN useful for benchmark comparisons. 
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KNN requires that a distance metric 1 2( , )d x x  be defined over the domain of x .  

This is often taken to be the Euclidean distance metric.  In KNN, the parameter k  

determines the number of elements in the set 

 * * *
1 2

*
{ , , }

1
arg min ( , )

k

k

ix x x
i

d x x
=
∑…

, (5.4) 

where { }* * *

1 2, , kx x x…  are unique elements taken from the set { }1 2, , , nx x x…  of known 

exemplars.  These k  elements are the nearest in distance to the point of interest x , and 

from the classes associated with these elements, it is possible to construct the class 

probability estimator for class C  at x .  Let y  be the class associated with x  and let *
iy  

be the class associated with *
ix .  Then 

 *

1

1ˆ( ) 1( )
k

i
i

P y C y C
k =

= = =∑  (5.5) 

(Bishop 1995). 

In this comparative analysis, KNN models were applied without dimension 

reduction to data normalized to have zero mean and unit variance in each dimension.  The 

optimal k  was estimated by leave-out-one cross-validation. 

5.1.5 Linear discriminant analysis (LDA) 

Linear discriminant analysis (Mardia, Kent et al. 1979; Ripley 1996), as described 

in Section  4.3.1, was applied directly to the original variates of benchmark databases.  In 

some cases, data were linearly dependent, requiring dimension reduction to ensure that 

input data had rank equal to its dimensionality. 
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5.1.6 Support vector machines (SVM) 

This work used the support vector machine toolbox created by Cawley (2000).  

The toolbox employs Vapnik’s (1995) support vector machine for classification by means 

of the sequential minimal optimization (SMO) algorithm established by Platt (1999).  The 

algorithm represented utilizes a Gaussian radial basis kernel.  Multiple classification was 

performed using the DAGSVM directed acyclic graph method (Platt, Cristianini et al. 

2000).  The DAGSVM method constructs a separate SVM classifier for each possible 

class pairing.  These binary classifiers are combined according to the connections in the 

directed acyclic graph, which determines the order in which classes undergo elimination. 

ξα  cross-validation (Joachims 2000) was used to select the kernel radius r  and 

regularization parameter C .  These were determined by performing a simplex 

minimization of the error estimate Errξα  over the space of ( ),r C  for each binary 

classifier in a DAGSVM system. 

5.2 Methods and metrics 

This section summarizes methodologies incorporated in the DELVE software 

(Rasmussen, Neal et al. 1996), as described in detail in the DELVE Manual (Rasmussen, 

Neal et al. 1996), along with related methodologies used in this dissertation to extend the 

paired comparisons of algorithms in DELVE to multiple comparisons and their 

interpretation.  DELVE employs one of two types of ANOVA model depending on 

whether disjoint test datasets are specified to correspond to the training replicates (the 

“hierarchical” model) or a single common test dataset is used for all training replicates. 
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5.2.1 DELVE bivariate comparisons with disjoint test data 

When test datasets are disjoint, DELVE represents a classifier’s loss on training set i  and 

test case j  by the linear model 

 ij i ijy aµ ε= + + , (5.6) 

in which the variable ia  accounts for the variation in classification performance 

measured across training sets i  (Rasmussen, Neal et al. 1996).  It is assumed for the sake 

of ANOVA analysis that ia  and ijε  are independent Gaussian random variables.  The 

same model can be used to represent the difference in performance between two different 

classifiers when ijy  is instead taken to be the difference in classification performance.  

For paired comparisons, the significance of this difference can be determined using a t-

test.  The relevant t statistic is 

 
( ) ( )

1
2

21
1 i

i
t y y y

I I

−
 

= −  − 
∑  (5.7) 

with 1I −  degrees of freedom (Rasmussen, Neal et al. 1996). 

5.2.2 DELVE bivariate comparisons with common test data 

In some cases, insufficient data exist to support the use of disjoint test datasets for 

each replicate.  In these cases, DELVE employs a single common test set .  Under these 

circumstances, it is necessary to model the effects of the test cases on the loss 

(Rasmussen, Neal et al. 1996):  

 ij i j ijy a bµ ε= + + +  (5.8) 
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As in (5.6), ia  accounts for training set variation.  The variable jb  accounts for 

variation in loss due to test case j  (Rasmussen, Neal et al. 1996).  For paired tests, this 

model can be used to represent the difference in performance between two classifiers 

when ijy  is taken instead to be the difference in classification performance.  Rasmussen, 

Neal et al. employ a quasi-F test to test the hypothesis that the mean difference between 

the performances of the classifiers is nonzero.  If the p-value of this test is greater than 

0.05, the difference is taken to be not significant. 

5.2.3 Multiple comparisons using DELVE 

The DELVE methodology allows bivariate comparisons between any two 

algorithms.  However, it does not provide an explicit way to perform multiple 

comparisons. 

A conservative approach to multiple comparisons of n  candidates utilizes the 

Bonferroni correction,  

 '
( 1) / 2n n

αα =
−

, (5.9) 

which constrains the experiment-wide probability of error in determining the direction of 

performance differences to be less than or equal to α .  Although this is very conservative 

in determining significance and direction of results comparisons, it assigns large 

confidence intervals.  These might lead one to believe that an individual algorithm could 

potentially perform much better than it actually does.  Adjusting for multiple 

comparisons in this way makes it very important not to draw conclusions from the lack of 

significance. 
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The staircase plots presented in this dissertation reflect pairwise differences between 

algorithm performances.  The Bonferroni correction was not used because it might mask 

significant statistical differences between any two individual algorithms of interest. 

5.2.4 Staircase plotting of multiple comparison data 

Basford and Tukey (2000) introduced a new plot format that presents results and 

their multiple comparisons in a single display.  The staircase plot organizes multiple 

comparison data so they may be readily interpreted.  Significant differences are 

represented by the relative positions of results on this plot.  A result that is on a higher 

tier and to the right of a given result is significantly different unless otherwise indicated.  

A result that is on a lower tier and to the left is likewise significantly different.  

Comparisons must take both the tier and horizontal position into account.  A result on the 

same tier is never significantly different; nor is a result to the right on a lower tier or to 

the left on a higher tier. 

A disadvantage of the staircase plot is that it requires that the order of presentation 

of results be flexible.  However, the amount of information that can be presented in this 

manner would otherwise require multiple displays, one to show the results with error 

estimates and another to represent all of the ( )( 1)
2

n n −  bivariate comparisons between n  

results.  By using horizontal position for information display, the staircase plot 

successfully consolidates results and their bivariate comparisons.  For this reason, 

staircase plots are used throughout this chapter. 
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5.3 DELVE letter recognition benchmark 

The letter recognition database (Frey and Slate 1991; Rasmussen, Neal et al. 

1996; Hettich, Blake et al. 1998) contains 20,000 cases, each consisting of sixteen input 

characteristics and an associated output class, one of twenty-six uppercase letters.  

DELVE segments the database into six test sets of 1,773 cases each and six disjoint 

training sets with 390, 780, or 1,560 exemplars each. 

When trained on only 390 exemplars (Figure  5.3), six algorithms performed 

almost uniformly well, with between 64% and 68% correct classification rates.  These 

included the cosine and Legendre orthonormal basis function networks, backprop, KNN, 

LDA, and SVM.  Among these systems in the top group, only two significant differences 

were observed at .05α = .  The cosine system had a significantly better classification rate 

(66.1%) than the Legendre (64.3%), and the SVM performance (67.3%) was significantly 

higher than that of KNN (64.4%).  Three systems failed to make the top group.  

Significantly lower performance was observed using the Daubechies (54.8%), CART 

(52.3%), and Haar (20.9%) classifiers. 

With 780 exemplars for training, the best-performing group of algorithms, 

between 73% and 78% correct classification rates, consisted of backprop, KNN, and 

SVM.  Within this group, SVM performed significantly better than KNN.  Next in order 

of classification rate was the cosine basis function network (70.1%).  This outperformed a 

third group consisting of the Legendre basis function network and LDA.  Apart from the 

Haar classifier, the Daubechies and CART systems were least suited to the 780-exemplar 

letter classification task. 



 

 

97

When trained with 1,560 exemplars, a similar ordering was observed, with greater 

differentiation between the algorithms.  Only backprop (86.7%) and SVM (85.7%) had 

classification rates in a top grouping.  In order, they were followed by the KNN, cosine, 

and Legendre systems.  A lower group consisted of the Daubechies, CART, and LDA 

classifiers.  Within this group, LDA had a significantly higher correct classification rate 

than did the Daubechies classifier.  Only the Haar classifier performed beneath this lower 

group. 

On all of these tasks, orthonormal basis function neural networks employing 

cosine and Legendre bases were competitive with popular standard classifiers, equalling 

or exceeding the classification performance of LDA.  They were most competitive when 

only 390 training exemplars were available.  On this task, their performance was 

statistically indistinguishable from backprop, KNN, LDA, and SVM.  Of the six top-

grouped systems on the 390-exemplar task, it appears that backprop, KNN, and SVM 

benefitted most from the availability of additional training data, while LDA benefitted the 

least.   
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Figure  5.3:  Staircase plot of DELVE benchmark performance for the letter 
recognition task with 390 training exemplars.  Performance tiers are separated by 
dashed lines.  Algorithms that are to the right and in a higher tier with respect to a 
selected algorithm have significantly better classification performance.  On this task, 
six algorithms had equivalent performance in the top tier, and all but one of these 
did significantly better than the two second-tier systems. 
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Figure  5.4:  Staircase plot of DELVE benchmark performance for the letter 
recognition task with 780 training exemplars.  Performance tiers are separated by 
dashed lines.  Algorithms that are to the right and in a higher tier with respect to a 
selected algorithm have significantly better classification performance. 
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Figure  5.5:  Staircase plot of DELVE benchmark performance for the letter 
recognition task with 1,560 training exemplars.  Performance tiers are separated by 
dashed lines.  Algorithms that are to the right and in a higher tier with respect to a 
selected algorithm have significantly better classification performance. 
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Figure  5.6:  Mean CPU time required to train four orthonormal basis function 
networks (left) and five other classifiers (right) on the DELVE letter recognition 
database.  CPU times are shown on a logarithmic scale.  Values less than 1 ms are 
rounded up to 1 ms. 
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Figure  5.7:  Mean CPU time required to test four orthonormal basis function 
networks (left) and five other classifiers (right) on 1,773 exemplars from the DELVE 
letter recognition database.  CPU times are shown on a logarithmic scale.  Values 
less than 1 ms are rounded up to 1 ms. 

5.4 DELVE image segmentation benchmark 

The University of Massachusetts Vision Group’s image segmentation database 

(Rasmussen, Neal et al. 1996; Hettich, Blake et al. 1998) contains 2,310 cases, each 

consisting of sixteen local image attributes and an associated output class, one of seven 

textures.  The DELVE specification for this database utilizes the data three times, with 

the number of training exemplars doubling in each run.  DELVE segments the database 

into four or eight disjoint training replicates, depending on the number of training 
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exemplars (70, 140, or 280) used for a given run.  A common test set of 1,290 cases is set 

aside. 

Regardless of the number of training exemplars provided, top performing systems 

included cosine, Daubechies and Legendre orthonormal basis function networks and 

LDA.  Only these algorithms were in the top group when trained on 70 exemplars, all 

falling between 72% and 75% correct classification.  The performance of CART (67.7%) 

was not significantly worse than the LDA system on this task, nor was it significantly 

better than backprop or KNN, or SVM.  These three algorithms and CART formed a 

second group for which the classification rates, between 63% and 68%, were not 

significantly different.  The Haar orthonormal basis function network did significantly 

worse than any other system benchmarked on the image segmentation database 

regardless of the number of training exemplars provided. 

When 140 training exemplars were provided, the top performing group of 

algorithms became more inclusive.  In addition to the cosine, Daubechies and Legendre 

orthonormal basis function networks and LDA, top performers included CART and 

KNN.  Among these algorithms, the only significant difference observed at .05p =  was 

between the cosine network (69.6% correct) and KNN (65.6% correct).  All of these 

algorithms but CART and KNN performed significantly better than backprop (60.4% 

correct).  All of the top group algorithms but CART performed significantly better than 

SVM (61.8% correct), which with backprop formed a second performance grouping.  

With only four replicates, the 280-exemplar benchmark had few significant 

differences.  There were no significant differences between the classification rates of the 
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cosine, Daubechies, and Legendre orthonormal basis function networks, CART, KNN, 

LDA, and SVM.  Backprop had significantly lower classification performance than the 

Daubechies, Legendre (72.3% correct), and CART classifiers.  
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Figure  5.8:  Staircase plot of DELVE benchmark performance for the image 
segmentation task with 70 training exemplars.  Performance tiers are separated by 
dashed lines.  Algorithms that are to the right and in a higher tier with respect to a 
selected algorithm have significantly better classification performance. 
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Figure  5.9:  Staircase plot of DELVE benchmark performance for the image 
segmentation task with 140 training exemplars.  Performance tiers are separated by 
dashed lines.  Algorithms that are to the right and in a higher tier with respect to a 
selected algorithm have significantly better classification performance. 
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Figure  5.10:  Staircase plot of DELVE benchmark performance for the image 
segmentation task with 280 training exemplars.  Performance tiers are separated by 
dashed lines.  Algorithms that are to the right and in a higher tier with respect to a 
selected algorithm have significantly better classification performance. 
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Figure  5.11:  Mean CPU time required to train four orthonormal basis function 
networks (left) and five other classifiers (right) on the DELVE image segmentation 
database.  CPU times are shown on a logarithmic scale.  Values less than 1 ms are 
rounded up to 1 ms. 
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Figure  5.12:  Mean CPU time required to test four orthonormal basis function 
networks (left) and five other classifiers (right) on 1,190 exemplars from the DELVE 
image segmentation database.  CPU times are shown on a logarithmic scale.  Values 
less than 1 ms are rounded up to 1 ms. 
 

5.5 DELVE Titanic survival prediction benchmark 

The Titanic database (Rasmussen, Neal et al. 1996) contains 2,201 exemplars.  

Each represents a passenger on the Titanic.  The task is to classify an individual as a 

survivor or victim based on three variables: class of passage, sex, and whether a child or 

an adult.  DELVE utilizes the training data to form sets of eight replicates with 20, 40, 

80, and 160 exemplars. 
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Provided with 20 training exemplars, all algorithms tested, with the exception of 

SVM and CART, had equivalent classification performance.  SVM performed 

significantly worse than all other algorithms, achieving 64.8% correct while other 

systems all achieved at least 69.3% correct.  This value corresponded to the performance 

of the CART classifier, which was significantly worse than that of both LDA (72.5%) 

and backprop (72.3%).  The remaining algorithms (all orthonormal basis function 

classifiers and KNN) had performance that was not significantly worse than backprop or 

LDA, nor significantly better than CART. 

With 40 training exemplars, there were two tiers of classifiers based on 

performance.  No significant difference was observed between LDA (74.7% correct), 

backprop, CART, and the Legendre-based classifier.  All other algorithms could be ruled 

out from having the best performance on this task, and these formed a second tier.  The 

following significant differences were observed between systems in the first tier and 

second tier: LDA had a significantly higher correct classification rate than all systems in 

the second tier, backprop performed better than all systems in the second tier except 

KNN, and CART outperformed the SVM classifier.  The Legendre-based system could 

not be differentiated statistically from any other system. 

With 80 training exemplars, first-tier systems included backprop (76.5% correct), 

LDA, KNN, and CART.  The second tier contained the Legendre, cosine, and Haar 

orthonormal basis function classifiers.  Backprop performed significantly better than all 

second-tier systems, and the Daubechies classifier performed significantly worse than the 

backprop, LDA, KNN, and Legendre classifiers.  Other than these, the only distinction 
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that could be made was between SVM and all other systems: SVM had a significantly 

lower classification rate. 

With 160 training exemplars, backprop (78.0% correct), CART, and LDA had top 

classification scores.  A second group with no significant differences within the group 

consisted of KNN, the Legendre, cosine, and Haar basis function classifiers, and SVM.  

Of these systems, all but KNN performed significantly worse than LDA.  The 

Daubechies orthonormal basis function classifier performed significantly worse than 

backprop, CART, and KNN, but not LDA.  No system could be distinguished statistically 

from SVM due to high variance in the performance of SVM on this task. 
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Figure  5.13:  Staircase plot of DELVE benchmark performance for the Titanic 
survival prediction task with 20 training exemplars.  Performance tiers are 
separated by dashed lines.  Algorithms that are to the right and in a higher tier with 
respect to a selected algorithm have significantly better classification performance. 
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Figure  5.14:  Staircase plot of DELVE benchmark performance for the Titanic 
survival prediction task with 40 training exemplars.  Performance tiers are 
separated by dashed lines.  Algorithms that are to the right and in a higher tier with 
respect to a selected algorithm have significantly better classification performance. 
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Figure  5.15:  Staircase plot of DELVE benchmark performance for the Titanic 
survival prediction task with 80 training exemplars.  Performance tiers are 
separated by dashed lines.  Algorithms that are to the right and in a higher tier with 
respect to a selected algorithm have significantly better classification performance. 
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Figure  5.16:  Staircase plot of DELVE benchmark performance for the Titanic 
survival prediction task with 160 training exemplars.  Performance tiers are 
separated by dashed lines.  Algorithms that are to the right and in a higher tier with 
respect to a selected algorithm have significantly better classification performance. 
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Figure  5.17:  Mean CPU time required to train four orthonormal basis function 
networks (left) and five other classifiers (right) on the DELVE Titanic survival 
database.  CPU times are shown on a logarithmic scale.  Values less than 1 ms are 
rounded up to 1 ms. 
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Figure  5.18:  Mean CPU time required to test four orthonormal basis function 
networks (left) and five other classifiers (right) on 1,561 exemplars from the DELVE 
Titanic survival database.  CPU times are shown on a logarithmic scale.  Values less 
than 1 ms are rounded up to 1 ms. 

5.6 DELVE Adult benchmark 

The Adult database (Rasmussen, Neal et al. 1996) consists of six continuous 

attributes and seven categorical attributes from the 1994 U.S. Census database.  

Classifiers are to ascertain whether a particular exemplar (a census respondent) had a 

salary of greater than $50,000. 

Although there are only 13 attributes, using category indicator variables to 

represent the categorical attributes requires a total of 62 dimensions.  Extended canonical 
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variates were computed for the full dimensionality of the datasets.  The automatic scree 

test method of Section  4.2.2 was used to reduce the dimensionality of the extended 

variates acquired via PCA. 

With 256 training exemplars, top-tier systems included KNN, CART, and LDA.  

The second tier contained the Legendre, Haar, and cosine orthonormal basis function 

classifiers.  Of these, the Legendre system did not have significantly lower classification 

performance than LDA, and was also the only system with significantly higher 

performance than the third-tier Daubechies orthonormal basis function classifier.  SVM, 

also in the third tier, did not perform significantly worse than the Daubechies classifier. 

Backprop was significantly worse than all other systems on all the tasks for the 

Adult benchmark.  Regardless of the number of training exemplars, backprop with GCV 

model selection performed worse than chance, which appears to be due to the use of a 

generalized cross-validation criterion in place of actual cross-validation.  This 

generalized cross-validation criterion was minimized when the number of hidden layer 

nodes was between 15 and 50.  However, the performance of a simple linear discriminant 

on this task indicates that one hidden layer unit should be sufficient to provide good 

performance.  The failure to find such a simple model is a shortcoming of the GCV 

methodology used herein. 

When provided with 512 training exemplars, CART and LDA had significantly 

better classification performance than all other algorithms.  KNN followed, with 

performance significantly worse than each of these algorithms and significantly better 

than all other classifiers.  The cosine, Haar, and Legendre networks formed a tier of 



 

 

118

equivalent performance with no distinctions among the algorithms.  This tier was 

followed by the Daubechies, SVM, and backprop systems, respectively.  Each had 

significantly different performance. 

CART was again the best performing algorithm when 1,024 exemplars were 

provided.  This was followed by LDA and KNN, each significantly different from all 

other algorithms tested.  The cosine, Haar, Legendre, and SVM classifier systems 

followed.  There were no significant differences between these systems.  All the 

aforementioned systems except SVM had significantly better classification rates than the 

Daubechies orthonormal basis function system. 

With 2,048 training exemplars, CART had a significantly higher classification 

rate than any other algorithm.  This was followed by LDA, which also performed 

significantly better than the remaining algorithms, and KNN, which likewise was in a 

performance tier of its own.  SVM and the cosine, Haar, and Legendre orthonormal basis 

function networks formed a tier of equivalent performance.  The Daubechies system had 

significantly lower classification performance than all of these systems.  Of the tested 

systems, only backprop performed worse. 
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Figure  5.19:  Staircase plot of DELVE benchmark performance for the Adult task 
with 256 training exemplars.  Performance tiers are separated by dashed lines.  
Algorithms that are to the right and in a higher tier with respect to a selected 
algorithm have significantly better classification performance. 
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Figure  5.20:  Staircase plot of DELVE benchmark performance for the Adult task 
with 512 training exemplars.  Performance tiers are separated by dashed lines.  
Algorithms that are to the right and in a higher tier with respect to a selected 
algorithm have significantly better classification performance. 
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Figure  5.21:  Staircase plot of DELVE benchmark performance for the Adult task 
with 1,024 training exemplars.  Performance tiers are separated by dashed lines.  
Algorithms that are to the right and in a higher tier with respect to a selected 
algorithm have significantly better classification performance. 
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Figure  5.22:  Staircase plot of DELVE benchmark performance for the Adult task 
with 2,048 training exemplars.  Performance tiers are separated by dashed lines.  
Algorithms that are to the right and in a higher tier with respect to a selected 
algorithm have significantly better classification performance. 
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Figure  5.23:  Mean CPU time required to train four orthonormal basis function 
networks (left) and five other classifiers (right) on the DELVE Adult database.  CPU 
times are shown on a logarithmic scale.  Values less than 1 ms are rounded up to 1 
ms. 
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Figure  5.24:  Mean CPU time required to test four orthonormal basis function 
networks (left) and five other classifiers (right) on 3,706 exemplars from the DELVE 
Adult database.  CPU times are shown on a logarithmic scale.  Values less than 1 ms 
are rounded up to 1 ms. 

5.7 Discussion 

Of the orthonormal basis function networks tested, systems that use two of the 

bases, Daubechies and Legendre, are able to exactly represent a linear classification 

function and linear decision boundary.  Using functions at the fundamental frequency, the 

cosine basis can also represent monotonically increasing classification functions, 

although the boundaries and representations are nonlinear.  Of the bases tested, the Haar 

basis is unique in its inability to represent any continuous monotonic function other than 
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the trivial constant function.  It appears from these results that this may be 

disadvantageous for certain problems. 

Besides classification performance, a salient difference between classifiers is the 

amount of computation required for training (Figure  5.6, Figure  5.11, Figure  5.17, Figure 

 5.23).  CART is consistently the fastest system to be trained on all the benchmark tasks 

considered in this chapter, not requiring more than five milliseconds to fully fit a model.  

LDA is also extremely fast in this respect, with training times between 20 milliseconds 

and two seconds.  At the other extreme are backprop and SVM, the methods that perform 

nonlinear optimizations.  SVM scales poorly in the number of training exemplars, 

requiring only seconds for the smallest databases considered and several hours for the 

largest.  With the exception of the Adult database, for which backprop and SVM training 

times are similarly long, backprop is consistently the most time-consuming classifier to 

train.  While not as fast as either CART or LDA, orthonormal basis function and KNN 

classifiers require at most a few minutes for training on these databases. 

Disparities in CPU time for testing (Figure  5.7, Figure  5.12, Figure  5.18, Figure 

 5.24) are not as extreme as for training.  Where fast evaluation of test data is a concern, 

LDA, which requires a simple linear computation, is an excellent choice, taking around 

one microsecond of CPU time to classify a single exemplar, or only milliseconds to 

classify an entire database.  From the empirical results obtained here, backprop appears to 

be the clear second choice for testing speed.  KNN and SVM are consistently the two 

slowest systems for testing, typically between one and three orders of magnitude slower 

than backprop.  In the worst case, however, both algorithms take just over a minute to test 
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all exemplars.  Other algorithms, including CART and all orthonormal basis function 

classifiers, consistently test more rapidly than these systems but more slowly than 

backprop. 

5.8 Conclusions 

These DELVE classification benchmark results illustrate the need to test a variety 

of classification approaches on any particular dataset.  It is difficult to ascertain a priori 

which classifier will yield the best classification performance on a given task.  All of the 

classifiers tested had performance among the best results on one task or another in the 

series of benchmarks. 

The comparisons performed in this chapter confirm the suitability of orthonormal 

basis function classifiers to multidimensional classification tasks of similar nature to 

those in the DELVE benchmark suite.  It appears from these limited tests that 

orthonormal basis function neural network performance relative to other approaches may 

be best when the number of exemplars available for training is small.
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Chapter 6 

An Application of Orthonormal Basis Function Neural Networks to 

Land Use Change Classification 

6.1 Introduction 

The results of the previous chapter suggest that orthonormal basis function 

classifiers may be useful for processing remotely sensed data.  This chapter revisits the 

Nile River delta land use change database of  Chapter 2 to evaluate the performance of 

orthonormal basis function neural networks on the task.  It is desirable to investigate a 

variety of systems for such a problem since it is unknown a priori which systems will 

perform well.  This database differs from many remote sensing databases in that it 

requires the identification of changes in land use over time from a sequence of satellite 

images. 

For remote sensing applications, there are several performance measures of 

interest.  The user’s accuracy assesses the classification rate on the subset of pixels or 

sites for which class labels are known.  The producer’s accuracy estimates the 

classification rate on all pixels in a map.  The training and testing speeds are also 

important for many remote sensing applications due to the volume of data to be 

processed. 
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6.2 Methods 

6.2.1 Data 

The dataset, consisting of ten satellite images, had been previously been 

geometrically registered and radiometrically normalized (Lenney, Woodcock et al. 1996).  

For each pixel of the registered image set, a multi-date vector was prepared.  Data 

consisted of six bands of 30m Landsat TM data from ten dates between 1984 and 1993, 

of which one band for one date was missing.  The line and sample (vertical and 

horizontal) coordinates of each 30m pixel were also available.  In addition, each pixel 

was associated with a geographic region (delta, desert, coast, or wetlands).  The 

geographic region was represented by a 1-of-4 coding scheme, in which one of four 

vector elements was set to a value of one and the remaining three elements were set to a 

value of zero.  The 59 bands of Landsat TM data, 2 coordinates, and 4 region indicator 

variables were concatenated to form a 65-dimensional feature vector for every pixel in 

the study area.  Using extended canonical variate analysis (Section  4.2.4) on the labeled 

pixels, the dimensionality of the feature vectors was reduced to ten, including seven 

canonical variates and the three most prominent principal components of the residual 

(Figure  6.1).  These canonical variates accounted for 1.08% of the total variance in the 

feature matrix X .  The first three principal components accounted for 87.24% of the total 

variance in X .  In all, the first ten extended canonical variates accounted for the full 

linear classification model and 88.33% of the variance in the independent variables. 
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Figure  6.1:  Scree plot of the principal components of the land use change database 
after removal of the canonical variates.  The elbow at 10q =  (seven canonical 
variates and three additional components) was selected by visual inspection. 
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Values in these ten dimensions were normalized by linear transformation to be in 

the range [ ]0,1  for every pixel in the study area.  This was necessary for the ARTMAP 

and orthonormal basis function classifiers.  CART and LDA classifiers are not sensitive 

to rescaling, so both were unaffected by this transformation.  The KNN algorithm used in 

this work rescales all variables to have zero mean and unit variance, and was likewise 

unaffected by the normalization of variates to the unit interval. 

6.2.2 Site-based leave-out-one cross-validation 

The Egypt land use change ground truth dataset consists of 358 sites, each of 

which contains four pixels.  These pixels may be highly correlated within a site, so a 

typical leave-out-one cross-validation methodology would result in the presentation 

during training of pixels almost identical to the pixel left out. 

To eliminate this anticipated source of bias, cross-validation was performed by 

leaving out all pixels within a site.  The algorithms were trained on the remainder of the 

database, then tested on each of the four validation pixels. 

It is also possible to determine a site classification rate by combining pixel 

classifications within a site.  However, the classification rates obtained in this experiment 

refer to the number of pixels correctly classified. 

A limitation of leave-out-one cross-validation is that cross-validation was not 

used to select the number of dimensions for training via the extended canonical variates 

procedure.  It is possible that a bias could have been introduced in the dimension 

reduction process. 
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6.2.3 Algorithms tested 

Algorithms considered in this experiment included LDA, CART, KNN, and 

orthonormal basis function networks employing the discrete cosine, Daubechies D4, and 

Legendre polynomial bases.  The experiment also included the ARTMAP system of 

 Chapter 2 with the following representative parameters: baseline vigilance 0ρ = , choice 

parameter .001α = , and 3V =  voters.  Sites, each containing four pixels, were presented 

an average of 108 times. 

Support vector machines and backpropagation neural networks were excluded due 

to their large training time requirements.  On DELVE databases with a similar number of 

training exemplars, the versions of these algorithms employed in this dissertation 

required upwards of 20 minutes of CPU time for training, and typically an hour or more 

(Figure  5.6, Figure  5.23).  Extrapolating from these numbers, in a leave-out-one-site 

cross-validation scheme with 358 sites, the expected CPU time necessary for the 

evaluation performed in this chapter on other algorithms is anywhere from 120 hours to 

360 hours or more.  This long running time is attributable to the cross-validated model 

selection integral to the algorithms presented in  5.1, which for backprop and SVM 

algorithms increases the running time by an order of magnitude or more over ad hoc 

parameter selection. 

6.3 Results and discussion 

Performance of the LDA classifier (93.5%) was significantly better than that of all 

other classifiers tested.  The ARTMAP classifier (84.1%), followed by the Daubechies 
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orthonormal basis function classifier, (87.1 %) performed significantly worse than all 

other algorithms tested.  Remaining classifiers (KNN, CART, and cosine and Legendre 

orthonormal basis function networks) did not have significantly different performance 

from one another; all had a classification rate between 90.1% and 91.0%. 

An important observation is that the orthonormal basis function networks do not 

perform a full linear discriminant.  Rather, LDA is used as a postprocessing tool to better 

draw decision boundaries.   These boundaries are not drawn in the full space of the 

orthonormal basis transformation. 

Canonical variate analysis on the 65-dimensional feature vectors allows the 

database to be visualized in up to seven dimensions.  The seven-dimensional view shows 

why LDA is an effective approach for this classification task.  The first two canonical 

variates, in Figure  6.3, show that most of the classes are in clusters that are nearly 

separable by linear boundaries.  These include classes 5 through 8 (agriculture in 

desert/coast, reclamation, wetland reclamation, and other), each of which appears as a 

single cluster, and class 4 (agriculture in delta), which appears to be bimodal with two 

distinct clusters.  Using the first two canonical variates alone, it is difficult to distinguish 

between classes 1, 2, and 3 (urban, urbanization, and reduced productivity). 

Although it appears from the first two variates to be a difficult task to separate 

classes 1 through 3, additional variates provide a greater degree of separation between the 

classes.  This can particularly be seen in Figure  6.9.  Class 2 (urbanization) is the only 

class that does not form one or more visually distinguishable clusters in the canonical 

variate plots, although the seventh canonical variate in Figure  6.6 appears to separate 
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some members of this class from the remainder of the database.  This visual analysis 

suggests that a linear discriminant that can determine appropriate separation boundaries 

between the clusters should classify most data with few errors. 

Figure  6.2 shows a comparison of six classifiers on the Egypt land use change 

database.  Significance of differences was evaluated using McNemar’s test (Fleiss 1981; 

Ripley 1996).  With the exception of the ARTMAP classifier developed in  Chapter 2, all 

algorithms were applied to normalized 65-dimensional feature vectors containing the data 

listed in Table  6.1. 

Figure  6.11 gives a measure of the importance of each of the variates in 

determining the classification.  This chart highlights the relatively large import of 

geographical region in determining land use and land use change classification.  

Moreover, all of the most important image spectral bands are taken from the first three 

images of the dataset and the final image of the dataset, suggesting that land use change 

was occurring throughout the entire measured period. 
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Input vector 
element 

Description 

1-6 Normalized spectral bands from the June 7, 1984 image 
7-12 Normalized spectral bands from the September 11, 1984 image 
13-18 Normalized spectral bands from the June 10, 1985 image 
19-24 Normalized spectral bands from the December 22, 1986 image 
25-29 Normalized spectral bands from the May 15, 1990 image 
30-35 Normalized spectral bands from the August 21, 1988 image 
36-41 Normalized spectral bands from the August 3, 1990 image 
42-47 Normalized spectral bands from the February 19, 1991 image 
48-53 Normalized spectral bands from the June 13, 1992 image 
54-59 Normalized spectral bands from the from April 29, 1993 image 
60 Pixel x-coordinate 
61 Pixel y-coordinate 
62 Geographic region indicator for delta (Boolean) 
63 Geographic region indicator for desert (Boolean) 
64 Geographic region indicator for coast (Boolean) 
65 Geographic region indicator for wetlands (Boolean) 

Table  6.1:  Classifier inputs for the Nile River delta land use change task.  
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Figure  6.2:  Staircase plot of Egypt land use change dataset results for six classifiers.  
Performance was evaluated using leave-out-one cross-validation in which each site 
was omitted in turn and the classifiers were trained on the remaining sites.  
Significance levels were determined with McNemar’s test (Fleiss 1981; Ripley 1996).  
Error bars are not available due to the testing methodology.  These results show 
three performance tiers with no significant difference between the Cosine and 
Legendre orthonormal basis function networks, CART, and K-nearest neighbors. 
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Figure  6.3:  First and second canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
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Figure  6.4:  First and third canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
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Figure  6.5:  First and fourth canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
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Figure  6.6:  First and seventh canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
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Figure  6.7:  Second and third canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
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Figure  6.8:  Second and fourth canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
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Figure  6.9:  Second and fifth canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
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Figure  6.10:  Third and fourth canonical variates of the Egypt land use change 
database.  Classes are indicated by digits one through eight:  1 = urban, 2 = 
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast, 
6 = reclamation, 7 = wetland reclamation, 8 = other. 
 



 

 

144

0 0.5 1 1.5 2 2.5 3 3.5

Image 3 (6/10/85), Band 2

Image 2 (9/11/84), Band 5

Image 1 (6/7/84), Band 3

Image 3 (6/10/85), Band 6

Image 2 (9/11/84), Band 1

Image 2 (9/11/84), Band 2

Image 10 (4/29/93), Band 5

Image 10 (4/29/93), Band 6

Image 10 (4/29/93), Band 3

Area 2 (Desert)

Image 3 (6/10/85), Band 3

Area 1 (Delta)

Magnitude of corresponding CVA coefficients

 
Figure  6.11:  The twelve components of the Egypt land use change database with the 
largest root sum-of-squares λ  weights in the canonical variate analysis (CVA).  The 
indicator variables for the areas Delta and Desert are strongly related to the class 
labels.  Other major class predictors include three bands each from the images 
taken on September 11, 1984; June 10, 1985; and April 29, 1993; and one band from 
the image taken on June 7, 1984.  These represent the first year and the last year of 
the study period. 
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Urban 290 263 7 13 7     90.7% 

Urbanization 33 3 24 1 5     72.7% 

Reduced productivity 127 6 4 110 3    4 86.6% 

Agriculture in delta 540 4 5  531     98.3% 

Agriculture in 
desert/coast 

41    2 36   3 87.8% 

Reclamation 88    14  72  2 81.8% 

Wetlands reclaimed 16       12 4 75.0% 

Other 297    2  4  291 98.0% 

Total 1432 276 40 124 564 36 76 12 304 Overall 
93.5% 

Table  6.2:  User’s accuracy assessment of the LDA classifier on 1,432 pixels cross-
validated by leaving out one four-pixel site.  Errors include difficulties 
distinguishing urbanization from other land uses, confusion between urban and 
reduced productivity, and errors of commission identifying reclamation, agriculture 
in desert/coast, and wetlands reclaimed sites.  Overall accuracy on the ground truth 
dataset was 93.5%. 
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Urbanization 
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0.013
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0.063

%     0.413% 

Reduced 
productivity 

0.094
% 

0.063
% 

1.732
% 

0.047
%    0.063

% 2.000% 

Agriculture in 
delta 

0.397
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0.496
%  52.656

%     53.549% 

Agriculture in 
desert/coast 
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%   0.067

% 0.910% 

Reclamation    0.850
%  4.370

%  0.121
% 5.341% 

Wetlands 
reclaimed 

      0.557
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0.186
% 0.743% 

Other    0.238
%  0.475

%  34.559
% 35.271% 

Estimated 
true 
proportions 

2.137
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0.902
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1.824
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53.940
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0.557
% 
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%  

Producer’s 
accuracy 

75.3
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33.3
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95.0
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97.6
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100.0
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90.2
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100.0
% 

98.8
% 

Overall 
96.6% 

Table  6.3:  Producer’s accuracy assessment of the LDA classifier on 1,432 pixels 
cross-validated by leaving out one four-pixel site.  Producer’s accuracy estimates the 
percentage of pixels of each ground truth class correctly identified.  The overall 
producer’s accuracy of 96.6% is an estimate of the percentage of pixels in the entire 
map that are correctly identified. 
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Figure  6.12:  Map of labels assigned by the LDA classifier in the Nile River Delta 
study area.  Water and outside study area were labeled by application of appropriate 
masks to the map.  The most noticeable error is that coastal regions are labeled 
almost entirely as agriculture in desert/coast regardless of their land use. 

6.4 Conclusions 

Orthonormal basis function classifiers were found to be suitable for processing 

remotely sensed land use change data from the Nile River delta.  The cosine and 

Legendre orthonormal basis function systems did not differ significantly from the CART 

and KNN classifiers.  LDA had the best classification rate of all tested systems, 

suggesting that the data are close to linearly separable. 
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Visual inspection of the canonical variates appears to bear this out.  It may not be 

necessary to perform a nonlinear transformation to get the data into a space in which the 

classes are for the most part linearly separable.  For such a database on which LDA 

performs exceptionally well, it may not be advantageous to transform the data as a step in 

classification.  It may instead be best to use a simple linear discriminant if the data 

already appear to be clustered by class. 
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Chapter 7 

Future Work 

7.1 Introduction 

The orthonormal basis function neural network classifiers introduced in this 

dissertation provide a viable platform for multidimensional pattern classification.  Many 

opportunities exist to explore variations on these classifiers, a few of which have been 

identified during the course of this study. 

The multitemporal LDA classifier used for Nile River delta land use change 

classification in Chapter 6 also could serve as a starting point for interesting variations.  

These might improve the classification accuracy of a linear discriminant as applied to 

such remote sensing data. 

7.2 Future work in orthonormal basis function pattern classification 

7.2.1 Stepwise regression for selection of model terms 

Adaptive spline fitting methods such as MARS (Friedman 1991) and 

POLYMARS (Stone, Hansen et al. 1997) incorporate algorithmic approaches to select 

the terms that will be incorporated in a model.  These use a forward and backward 

stepwise regression methodology (Friedman and Silverman 1989) to build a sequence of 

models, each differing by the inclusion or exclusion of a single model term.  Such an 

approach might prove useful for selecting orthonormal basis function models, in 

particular if minimization of an objective function other than the MISE is desired.  
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Stepwise regression would need to be coupled with a cross-validation or generalized 

cross-validation methodology to determine the goodness of fit.  A potential advantage of 

stepwise regression is that basis functions could be selected from a very large pool, since 

it might not be necessary to restrict the size of the pool to prevent overfitting. 

7.2.2 Shrinkage for selection and fitting of model terms 

An alternative to truncation methods (stopping and single-term exclusion) for 

model refinement is shrinkage (Tibshirani 1996; Hastie, Tibshirani et al. 2001).  

Shrinkage methods define an objective measure with a penalty on the size of the 

coefficients, such as a penalized residual sum of squares, and iteratively attempt to 

minimize this objective measure by shrinking the coefficients of a fit toward zero.  Terms 

are eliminated from a model if their coefficients are shrunk to zero.  This results in a 

biased model that may have significantly less error than the original fit.  A potential 

drawback is that the iterative optimization steps of shrinkage methods can be 

computationally expensive and time-consuming.  This might negate a major advantage of 

using orthonormal basis function expansions, the speed of fitting a model. 

7.2.3 Objective thresholds for automated scree tests based on eigenvalue influence 

In the automated scree test for principal component dimensionality introduced in 

 4.2.2, the threshold elbowΓ  was based on an ad hoc evaluation of two well studied 

psychological databases.  These databases give some indication of the suitability of this 

method and of appropriate values for the threshold elbowΓ .  Additional study is required to 

determine whether this thresholding method is appropriate for a wider variety of 
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problems.  If so, a key problem is to determine a technique for selecting appropriate 

thresholds in an objective manner. 

7.3 Future work in land use change classification 

7.3.1 Improving error rates through discriminant analysis on low-confidence data 

Although the multitemporal LDA classifier achieved 93.5% user’s accuracy on 

the Nile River land use change database, it may be possible to identify systematic sources 

of classification error and improve these results further.  A potential approach is to 

identify the small percentage of data points misclassified, and then run further 

discriminant analysis on these data.  If a linear discriminant is used as this second 

classifier, however, it is unclear how to combine it with the main LDA model, since an 

additive model of linear discriminants would yield a linear model, only with parameters 

different from the main, optimal LDA model. 
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Appendix A  

Analysis of Variance Tables 

A.1 Introduction 

The following are tables summarizing results for the four-way ANOVA multiple 

comparison of Section  4.4.  For each task with a particular number of exemplars, two 

tables are given.  The first is for a four-way model without interactions, while the second 

is for the best four-way model with interactions, selected to minimize the Akaike 

information criterion (AIC) as implemented by the R Development Core Team (2003).  

The estimated AIC for each model is given, as is The Shapiro-Wilk test statistic for 

normality of the residuals. (R Development Core Team 2003). 

The response variable is the zero-one classification error.  The four factors under 

consideration in the ANOVA models, and their corresponding abbreviations in the results 

of the following sections, are as follows: 

Abbreviation Factor Levels 

pre Preprocessing method CVA, PCA 

dim Preprocessing dimensionality 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

lda Postprocessing method LDA, Maximum (no postprocessing) 

bas Basis Cosine (discrete cosine basis with 
zero-crossing cutoff criterion), 

Daubechies (second-order 
Daubechies wavelets with scale 
product cutoff criterion), 

Legendre (polynomial basis with 
polynomial-order cutoff criterion)
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A.2 ANOVA tables for the DELVE image segmentation task 

A.2.1 Image segmentation, 70 exemplars 

Analysis of Variance Table for the four-way model without 
interactions 
 
Response: Classification error 
            Df Sum Sq Mean Sq  F value    Pr(>F)     
pre          1 0.7379  0.7379 220.0544 < 2.2e-16 *** 
lda          1 0.3126  0.3126  93.2172 < 2.2e-16 *** 
dim         11 0.8931  0.0812  24.2107 < 2.2e-16 *** 
bas          2 0.0551  0.0276   8.2191 0.0002858 *** 
Residuals 1136 3.8094  0.0034                        
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.05790834  
Estimated effects may be unbalanced 
 
AIC:  -3276.729 
 
Shapiro-Wilk normality test  
W = 0.9874, p-value = 2.066e-08 
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Analysis of Variance Table for the best four-way model with 
interactions 
 
Response: Classification error 
              Df Sum Sq Mean Sq  F value    Pr(>F)     
pre            1 0.7379  0.7379 240.3786 < 2.2e-16 *** 
lda            1 0.3126  0.3126 101.8267 < 2.2e-16 *** 
dim           11 0.8931  0.0812  26.4468 < 2.2e-16 *** 
bas            2 0.0551  0.0276   8.9782 0.0001355 *** 
pre:dim       11 0.2182  0.0198   6.4618 1.754e-10 *** 
lda:dim       11 0.1203  0.0109   3.5626 6.031e-05 *** 
lda:bas        2 0.0445  0.0223   7.2548 0.0007409 *** 
pre:lda:bas    3 0.0219  0.0073   2.3806 0.0681024 .   
Residuals   1109 3.4045  0.0031                        
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.05540619  
Estimated effects may be unbalanced 
 
AIC:  -3352.208 
 
Shapiro-Wilk normality test  
W = 0.9784, p-value = 4.266e-12 
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A.2.2 Image segmentation, 140 exemplars 

Analysis of Variance Table for the four-way model without 
interactions 
 
Response: Classification error 
            Df Sum Sq Mean Sq  F value    Pr(>F)     
pre          1 0.5510  0.5510 114.9709 < 2.2e-16 *** 
lda          1 0.0168  0.0168   3.5011   0.06159 .   
dim         11 1.0870  0.0988  20.6175 < 2.2e-16 *** 
bas          2 0.2647  0.1324  27.6157 1.946e-12 *** 
Residuals 1136 5.4446  0.0048                        
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.06922985  
Estimated effects may be unbalanced 
 
AIC:  2865.302 
 
Shapiro-Wilk normality test  
W = 0.9978, p-value = 0.1294 
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Analysis of Variance Table for the best four-way model with 
interactions 
 
Response: Classification error 
            Df Sum Sq Mean Sq  F value    Pr(>F)     
pre          1 0.5510  0.5510 130.2908 < 2.2e-16 *** 
lda          1 0.0168  0.0168   3.9676   0.04663 *   
dim         11 1.0870  0.0988  23.3647 < 2.2e-16 *** 
bas          2 0.2647  0.1324  31.2955 5.988e-14 *** 
pre:dim     11 0.3855  0.0350   8.2858 4.194e-14 *** 
lda:dim     11 0.2525  0.0230   5.4278 1.842e-08 *** 
lda:bas      2 0.1037  0.0519  12.2612 5.406e-06 *** 
Residuals 1112 4.7029  0.0042                        
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.06503251  
Estimated effects may be unbalanced 
 
AIC:  -2986.004 
 
Shapiro-Wilk normality test  
W = 0.9974, p-value = 0.05682 
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A.2.3 Image segmentation, 280 exemplars 

Analysis of Variance Table for the four-way model without 
interactions 
 
Response: Classification error 
           Df  Sum Sq Mean Sq F value    Pr(>F)     
pre         1 0.29272 0.29272 52.5511 1.399e-12 *** 
lda         1 0.00436 0.00436  0.7829    0.3766     
dim        11 0.57833 0.05258  9.4387 1.103e-15 *** 
bas         2 0.34944 0.17472 31.3670 1.224e-13 *** 
Residuals 560 3.11932 0.00557                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.07463383  
Estimated effects may be unbalanced 
 
AIC: -1337.235 
 
Shapiro-Wilk normality test  
W = 0.9885, p-value = 0.0001773 
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Analysis of Variance Table for the best four-way model with 
interactions 
 
Response: Classification error 
           Df  Sum Sq Mean Sq F value    Pr(>F)     
pre         1 0.29272 0.29272 55.0445 4.537e-13 *** 
lda         1 0.00436 0.00436  0.8200  0.365572     
dim        11 0.57833 0.05258  9.8865 < 2.2e-16 *** 
bas         2 0.34944 0.17472 32.8553 3.361e-14 *** 
pre:lda     1 0.05366 0.05366 10.0910  0.001574 **  
lda:dim    11 0.12843 0.01168  2.1955  0.013492 *   
lda:bas     2 0.03366 0.01683  3.1647  0.043005 *   
Residuals 546 2.90357 0.00532                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.07292386  
Estimated effects may be unbalanced 
 
AIC:  -1350.519 
 
Shapiro-Wilk normality test  
W = 0.9901, p-value = 0.0006168 
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A.3 ANOVA tables for the DELVE letter recognition task 

A.3.4 Letter recognition, 390 exemplars 

Analysis of Variance Table for the four-way model without 
interactions 
 
Response: Classification error 
           Df Sum Sq Mean Sq  F value    Pr(>F)     
pre         1 1.3955  1.3955 1099.751 < 2.2e-16 *** 
lda         1 1.4404  1.4404 1135.114 < 2.2e-16 *** 
dim        11 1.2007  0.1092   86.018 < 2.2e-16 *** 
bas         2 3.4561  1.7281 1361.818 < 2.2e-16 *** 
Residuals 848 1.0761  0.0013                        
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.03562223  
Estimated effects may be unbalanced 
 
AIC:  -3292.734 
 
Shapiro-Wilk normality test  
W = 0.9944, p-value = 0.002576 
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Analysis of Variance Table for the best four-way model with 
interactions 
 
Response: Classification error 
             Df Sum Sq Mean Sq   F value    Pr(>F)     
pre           1 1.3955  1.3955 2487.8702 < 2.2e-16 *** 
lda           1 1.4404  1.4404 2567.8693 < 2.2e-16 *** 
dim          11 1.2007  0.1092  194.5915 < 2.2e-16 *** 
bas           2 3.4561  1.7281 3080.7195 < 2.2e-16 *** 
pre:lda       1 0.0379  0.0379   67.5294 8.694e-16 *** 
pre:dim      11 0.3646  0.0331   59.0876 < 2.2e-16 *** 
lda:dim      11 0.0597  0.0054    9.6694 < 2.2e-16 *** 
pre:bas       2 0.0220  0.0110   19.6272 4.840e-09 *** 
lda:bas       2 0.0215  0.0107   19.1416 7.686e-09 *** 
dim:bas      22 0.1055  0.0048    8.5469 < 2.2e-16 *** 
pre:lda:bas   2 0.0066  0.0033    5.8951  0.002878 **  
pre:dim:bas  22 0.0236  0.0011    1.9155  0.007064 **  
Residuals   775 0.4347  0.0006                         
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.02368397  
Estimated effects may be unbalanced 
 
AIC:  -3929.829 
 
Shapiro-Wilk normality test  
W = 0.9967, p-value = 0.07378 
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A.3.5 Letter recognition, 780 exemplars 

Analysis of Variance Table for the four-way model without 
interactions 
 
Response: Classification error 
           Df  Sum Sq Mean Sq F value    Pr(>F)     
pre         1 1.18686 1.18686 1214.01 < 2.2e-16 *** 
lda         1 0.94247 0.94247  964.03 < 2.2e-16 *** 
dim        11 1.69071 0.15370  157.22 < 2.2e-16 *** 
bas         2 2.83378 1.41689 1449.31 < 2.2e-16 *** 
Residuals 848 0.82903 0.00098                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.03126713  
Estimated effects may be unbalanced 
 
AIC:  -3518.069 
 
Shapiro-Wilk normality test  
W = 0.9972, p-value = 0.1392 
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Analysis of Variance Table for the best four-way model with 
interactions 
 
Response: Classification error 
             Df  Sum Sq Mean Sq   F value    Pr(>F)     
pre           1 1.18686 1.18686 3654.0327 < 2.2e-16 *** 
lda           1 0.94247 0.94247 2901.6223 < 2.2e-16 *** 
dim          11 1.69071 0.15370  473.2059 < 2.2e-16 *** 
bas           2 2.83378 1.41689 4362.2540 < 2.2e-16 *** 
pre:lda       1 0.04572 0.04572  140.7748 < 2.2e-16 *** 
pre:dim      11 0.25904 0.02355   72.5005 < 2.2e-16 *** 
lda:dim      11 0.04562 0.00415   12.7680 < 2.2e-16 *** 
lda:bas       2 0.03213 0.01606   49.4552 < 2.2e-16 *** 
dim:bas      22 0.15739 0.00715   22.0263 < 2.2e-16 *** 
pre:lda:dim  11 0.00996 0.00091    2.7879 0.0014564 **  
pre:lda:bas   2 0.00299 0.00149    4.5986 0.0103537 *   
pre:dim:bas  22 0.01667 0.00076    2.3324 0.0005372 *** 
lda:dim:bas  22 0.01786 0.00081    2.4996 0.0001778 *** 
Residuals   744 0.24166 0.00032                         
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.01802241  
Estimated effects may be unbalanced 
 
AIC:  -4375.158 
 
Shapiro-Wilk normality test  
W = 0.9981, p-value = 0.4374 
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A.3.6 Letter recognition, 1,560 exemplars 

Analysis of Variance Table for the four-way model without 
interactions 
 
Response: Classification error 
           Df  Sum Sq Mean Sq F value    Pr(>F)     
pre         1 0.95754 0.95754 1258.03 < 2.2e-16 *** 
lda         1 0.72469 0.72469  952.10 < 2.2e-16 *** 
dim        11 1.65515 0.15047  197.69 < 2.2e-16 *** 
bas         2 2.29102 1.14551 1504.99 < 2.2e-16 *** 
Residuals 848 0.64545 0.00076                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.02758881  
Estimated effects may be unbalanced 
 
AIC:  -3734.34 
 
Shapiro-Wilk normality test  
W = 0.9973, p-value = 0.1730 
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Analysis of Variance Table for the best four-way model with 
interactions 
 
Response: Classification error 
             Df  Sum Sq Mean Sq   F value    Pr(>F)     
pre           1 0.95754 0.95754 3945.3743 < 2.2e-16 *** 
lda           1 0.72469 0.72469 2985.9321 < 2.2e-16 *** 
dim          11 1.65515 0.15047  619.9764 < 2.2e-16 *** 
bas           2 2.29102 1.14551 4719.8632 < 2.2e-16 *** 
pre:lda       1 0.04969 0.04969  204.7326 < 2.2e-16 *** 
pre:dim      11 0.14906 0.01355   55.8338 < 2.2e-16 *** 
lda:dim      11 0.07244 0.00659   27.1334 < 2.2e-16 *** 
pre:bas       2 0.00388 0.00194    8.0031  0.000362 *** 
lda:bas       2 0.03961 0.01980   81.5946 < 2.2e-16 *** 
dim:bas      22 0.12894 0.00586   24.1486 < 2.2e-16 *** 
pre:lda:bas   2 0.00840 0.00420   17.3073 4.387e-08 *** 
Residuals   797 0.19343 0.00024                         
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 
1 
 
Residual standard error: 0.01557883  
Estimated effects may be unbalanced 
 
AIC:  -4673.478 
 
Shapiro-Wilk normality test 
W = 0.9969, p-value = 0.08897 
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Appendix B  

Software for Orthonormal Basis Function Neural Network Classifiers 

 
The software for orthonormal basis function classification are published in a 

public repository, the home page of which can be found at http://vera.bu.edu/orth_basis/. 

This web server is managed by Dr. Michael A. Cohen: 

Dr. Michael A. Cohen 
Associate Professor of Cognitive and Neural Systems and Computer Science 
Department of Cognitive and Neural Systems 
677 Beacon St 
Boston, MA  02215 
(617) 353-9484 
mike@cns.bu.edu 
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