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ABSTRACT

This dissertation investigates neural network approaches to pattern classification.
One application considered is the classification of land use change in the Nile River delta
between 1984 and 1993 from ten Landsat Thematic Mapper (Landsat TM) images
acquired during this period. Other applications, including image segmentation, letter
recognition, and prediction of variables from census data, are represented by the
standardized DELVE (Data for Evaluating Learning in Valid Experiments) machine
learning database.

An ARTMAP (Adaptive Resonance Theory Map) neural network system is
developed for the land use change classification task. Cross-validation is used to enable
design decisions and to enable model fitting to be done without regard to data in test
partitions. The training of voting ARTMAP systems on brightness-greenness-wetness
(BGW) data for multiple dates and location data results in performance competitive with

previously used expert systems.
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Orthonormal basis function classification methods are extended to make them
appropriate for multidimensional problems. These methods share the multilayer
perceptron architecture common to many neural networks. A layer of basis functions
transforms the data prior to classification. Stopping rules are used to determine which
basis functions to include in a model to minimize the expected mean integrated squared
error (MISE). To perform stopping when using the discriminant function of Devroye et
a. (1996), an appropriate MISE estimator is developed. Linear transformations to rotate
data and improve multiple classification results are investigated using development
benchmarks from the DELVE suite. Orthonormal basis function neural network
classifiers using these principles are developed and tested along with standard pattern
classification techniques on the DELVE suite. Orthonormal basis function systems
appear to be well suited for some multidimensional problems. These systems, along with
benchmark classifiers, are also applied to the Nile River delta dataset. Although
orthonormal basis function systems are an appropriate choice for this task, the best
performance observed on this dataset is that of linear discriminant analysis (LDA)

applied to multitemporal data.
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Chapter 1

Introduction

1.1 ARTMAP neural networks for land use change classification

The ability to detect and monitor changes in conditions at the Earth's surface is
essential for understanding human impact on the environment and for assessment of the
sustainability of development. Advances in remote sensing technology are making vast
multitemporal databases available to researchers. Multitemporal refers to data collected
at multiple times; the multitemporal data studied in this dissertation are multi-date data,
having been collected on multiple dates. Such databases, which contain multiple images
of a given region acquired over a period of time, may yield important information about
environmental changes. This information needs to be extracted from high-dimensional
multispectral and multitemporal data. Automated change classification based on
sequences of large satellite images requires new, appropriate pattern recognition methods.
These methods should detect subtle long-term changes from high-dimensional data.

A novel land use change classification methodology that employs an ARTMAP
neural network classifier has been developed as part of this dissertation. This
methodology allows the identification of changes across a sequence of images of a given
area. These images need not be taken under the same seasonal, atmospheric, or
illumination conditions, and sensor calibration need not be consistent across the
sequence. The ARTMAP system can overcome these inconsistencies by learning to

identify the spectral patterns across multiple dates. This methodology was devel oped and



evaluated on a multi-date database of Landsat TM images of the Nile River delta region
showing land use changes from 1984 to 1993.

The ARTMAP land use change classifier system employs a cross-validation
scheme that allows the system to be evaluated on subsets of an available database while
being developed using other subsets. The system was developed for and applied to the

problem of classifying land use changes in the Nile River delta over a period of ten years.

1.2 Orthonormal basis function neural networks for pattern

classification

The current understanding of pattern classification using orthonormal basis
functions is insufficient for application to multidimensional classification problems.
Existing basis function selection methods as mainly used in the literature do not scale
well to multidimensional problems. Moreover, there are few serious evaluations of
orthonormal basis function classifiers available for the practitioner who wishes to
implement such a method.

This dissertation develops statistical tools based on analysis of the mean
integrated squared error (MISE) measure of goodness-of-fit applied to classification
models. These tools are necessary to alow stopping rule basis set selection methods to
be applied to multidimensional classification problemsin a novel way. The MISE-based
tools lead to methods for simplifying orthonormal basis function neural network models
by single-term exclusion and methods for comparing models that use different bases.

Multidimensional classification models have been constructed and optimized using these



new methods and have been tested on a number of benchmark classification tasks
including databases from the DELVE (Rasmussen, Nedl et al. 1996) and UCI machine
learning (Hettich, Blake et al. 1998) archives. These tests were examined for further
insights into the characteristics of multidimensional orthonormal basis function
classifiers.

Orthonormal basis function neura networks are based on the multilayer
perceptron architecture. They are closely related to radial basis function neural networks.
Both orthonormal basis function neural networks and radial basis function neural
networks consist of an input layer, a basis function layer that maps the input vector into a
high-dimensional space, and an output layer composed of additive neurons.

Radia basis function networks employ a set of basis functions of identical form
that can be described by the locations of their centers and the variables that control their
spread. These parameters specify a transformation from the problem space into a radial
basis space. In this type of basis, data are transformed into a system in which the
parameters associated with each basis function covary with the parameters associated
with every other basis function. Determining optimal parameters requires a nonlinear
optimization, which takes more time to compute than alinear optimization.

Orthonormal basis function networks, on the other hand, employ a set of basis
functions that are necessarily orthogonal. In models of this type, the parameters
associated with each basis function can be determined independently of the parameters

associated with every other basis function. Determining optimal parameters requires only



fast linear computations. For a two-class problem, this training process has

computational complexity
O(MND), (2.1)

where M isthe number of training exemplars, N isthe number of basis functions under
consideration, and D is the dimensionality of the input space. The complexity is
uniform under al assumptions about the data and scales linearly in each of M, N, and
D. For comparison, training of a fast support vector regularization algorithm has
computational complexity
o(M?D) (2.2)
(Platt 1999). Redundancy in the data can improve computation speed by up to an order
of M. Fitting a radia basis function neural network or similar model with fixed,
nonorthogonal basis functions requires regularization, carried out through computation of
a matrix pseudoinverse (Haykin 1994; Bishop 1995). The pseudoinverse is equivaent
computationally to obtaining the singular value decomposition (SVD). The SVD can be
computed in 4MN? +8N?® operations, in the case of the Golub-Reinsch SVD algorithm,
or 2MN?+11IN?® operations, in the case of the Chan or R-SVD agorithm (Golub and
Van Loan 1989). Thus, regularization of a network of fixed, nonorthogona basis
functions typically has computational complexity
O(MNZ+N?). (2.3)

Orthonormal basis function models are expected to be faster to fit than similar models

employing other bases or regularization methods.



Orthonormal basis function networks are known in the statistical literature, in
which they are referred to as the method of orthonormal series expansions (Devroye,
Gyorfi et a. 1996). Examples given in the literature demonstrate the use of orthonormal
series expansions for one-dimensional and two-dimensional classification problems.
However, it appears that this method has not been successfully applied to relevant
multidimensiona problems of dimension greater than two and that further methodology
needs to be developed for these problems.

This dissertation develops and formalizes a novel methodology for constructing
orthonormal basis function classifiers. The methodology differs from those currently
available in that it combines al of the elements required for applicability to
multidimensional problems. The mean integrated squared error (MISE) measure of
goodness-of-fit is well known within the pattern recognition literature (Tarter and Lock
1993). In this dissertation, it forms the foundation for a number of statistical decisions
that are required for determining an orthonormal basis function model. The development
of the relative MISE (RMISE) measure in this dissertation leads to new statistical tests
for selecting a model from a set of potential models, determining the optimum
complexity of a model, and selecting individual terms that can be removed from a model
without adverse impact. All of these procedures may be conducted rapidly within a
pattern recognition algorithm. This is important since a key reason for choosing
orthonormal basis function networks over other multilayer perceptron models is the

greater speed of fitting an orthonormal model. However, this simplicity trandlates into a



less parsimonious parameterization for nonlinear as opposed to linear models (Barron
1993; Barron 1994).

Another aspect of this work is benchmarking orthonormal basis function neural
network models to identify their strengths and limitations with respect to existing
classification methods. Currently there is insufficient scientific evidence to guide
practitioners in determining whether orthonormal basis function models should be
considered for particular types of problems. One reason for this is that current
orthonormal basis function methodologies are not generaly useful for applications to
practical problems of more than two dimensions. Further investigation of the theoretical
methodology should lead to greater applicability to classification models. For example,
tools such as the University of Toronto’'s DELVE statistical suite for machine learning
performance assessment (Rasmussen, Neal et a. 1996) and the University of California
Irvine's repository of machine learning datasets (Hettich, Blake et al. 1998) provide
standardized processes for testing machine learning methods. They enable standardized
comparisons of test results for methods that are applicable to datasets ssimilar to those in
the repositories. Experiments employing these tools have been conducted to evaluate the

new orthonormal basis function methodology. Results are discussed in this dissertation.



Chapter 2

ARTMAP Neural Networks for Land Use Change Classification

2.1 Introduction

Detecting and monitoring changes in conditions at the Earth’s surface are
essential for understanding human impact on the environment and for assessing the
sustainability of development. In the next decade, NASA will gather high-resolution
multispectral and multitemporal data, which could be used for anayzing long-term
changes, provided that available methods can keep pace with the accelerating flow of
information. This chapter introduces an automated technique, based on the ARTMAP
neural network, for change identification. In addition to classifying land use changes
from multitemporal, multispectral data, the system produces a measure of confidence in
classification accuracy. Landsat thematic mapper (TM) imagery of the Nile River delta
provides a testbed for these land use change classification methods. This dataset consists
of a sequence of ten images acquired between 1984 and 1993 at various times of year.
Field observations and photo interpretations have identified 358 sites as belonging to
eight classes, three of which represent changes in land use over the ten-year period. A
particular challenge posed by this database is the unequal representation of various land
use categories: three classes, urban, agriculture in delta, and other, comprise 95% of
pixels in labeled sites. A two-step sampling method enables unbiased training of the

neural network system across sites.



ARTMAP systems belong to the adaptive resonance theory (ART) family of
neural networks, which feature fast and stable learning. They benefit from an
architecture that differentiates them from other neural networks such as multilayer
perceptrons (MLPs). This architecture enables ARTMAP systems to retain memories
without forgetting them when other data are presented (Carpenter, Gopal et al. 1999).
These systems' parameters can converge to completely code an input vector in a single
presentation without forgetting previously presented data. This fast learning limits the
number of iterations required to fully train an ARTMAP neural network.

In addition to fast training, ARTMAP networks incorporate control mechanisms
that enable them to create internal category representations that allow generalization
within classes while ensuring that each training pixel is correctly classified (Carpenter,
Gopal et al. 1999). This adaptive method of constructing category representations allows
these neural networks to be applied to extended areas in which it is not known how well
results for one site will generalize to other sites. Where generdlization is not possible
within the training set, multiple internal representations will be constructed to incorporate
dissimilar sites.

ARTMAP neural networks have previously been shown to be effective tools for
land cover classification of individual images (Carpenter, Gjgja et a. 1997; Carpenter,
Gopal et al. 1999; Gopal, Woodcock et al. 1999). A straightforward extension of these
networks to land cover change classification might first establish categorical
classifications for each date. Postclassification comparisons of single-date class labels

would then show how land cover had changed during the study period. Unfortunately,



such a straightforward method gives poor results, since errors in single-date
classifications are compounded when multiple images are considered (Singh 1989).
Abuelgasim et al. (Abuelgasim, Ross et a. 1999) introduced a Change Detection
Adaptive Fuzzy (CDAF) network for environmental change detection and classification
to monitor land cover changes resulting from the Persian Gulf War. This ARTMAP-
based neural network compares images from multiple dates by assessing quantitative
change in class likelihood or class intensity, rather than directly comparing class labels.

Multi-date classification combines spectral information from a series of dates to
form multitemporal feature vectors. This method does not rely on single-date
classifications, but rather differentiates constant land use from changing land use by
direct application of a classifier algorithm to the multitemporal data. Multi-date
classification has previously been implemented to detect land use change using the K-
means technique (Abuelgasim, Ross et al. 1999). Muchoney and Williamson (2001) used
multitemporal NDVI data as inputs to a Gaussan ARTMAP neural network that
classifiesland cover.

An advantage of multi-date classification is that images need not be taken under
uniform seasonal, atmospheric, or illumination conditions, and sensor calibration need
not be consistent across the sequence. Images are not compared directly to one another;
rather, they are combined to form a rich database from which land use change patterns
can be discovered. This is both a blessing and a curse, as the dimension of the feature
vectors in the database increases with each date represented. The ARTMAP system is

designed to deal effectively with high-dimensiona data. It has been applied successfully
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to generate models with less classification error than those previously available for
problems involving hundreds of input features (Caudell, Smith et a. 1994; Rubin 1995),
as well as to a number of remote sensing land cover classification problems (Carpenter,
Gjgaet d. 1997; Abuelgasim, Ross et al. 1999; Carpenter, Gopal et al. 1999; Carpenter,
Gopal et al. 1999; Gopal, Woodcock et al. 1999; Muchoney and Williamson 2001).

The multi-date ARTMAP classification method developed here and in Carpenter,
Gopal et a. (2001) and Shock, Carpenter et al. (2002) extends single-date neural network
land cover classification methods by using multitemporal, multispectral feature vectors
derived from a sequence of ten satellite images as inputs to the neural network system.
The ARTMAP change classification system overcomes inconsistencies by learning to
identify the multi-date spectral signatures of image pixels. Using internal measures, it
estimates confidence in classification accuracy. This is similar to decision trees that can

give classification probability estimates (Mclver and Friedl 2001).

2.2 Data

Ten Landsat TM images of the Nile River delta region and surrounding areas
were taken at various times of year between 1984 and 1993. The images form the dataset
used by Lenney et a. (Lenney, Woodcock et al. 1996) to classify land use changes based
on characteristics of the multi-date NDV vegetation index feature vector. The images
were geometrically registered and normalized as described in that study. Field data were
collected during the summer of 1993 at 88 sites in the study area. Ground truth labels for
270 additional sites were determined by expert image analysis at the Boston University

Center for Remote Sensing. This information was combined to form a database of 358
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sites. In order to make full use of the limited number of |abeled sites, the present study
employs four-fold cross-validation. To this end, the database was partitioned into four
subsets, each containing 89, 90, or 91 sites. Each of the four subsets was then used, in
turn, as a test set to evaluate the performance of an ARTMAP classifier which had been
trained on the sites in the other three subsets. Carpenter et al. (1999) describe the use of
such a cross-validation method to evaluate machine learning systems for remote sensing

applications.

2.3 Method

2.3.1 Data preprocessing

Prior to performing model selection, input vectors were preprocessed. This
preparation consisted of computing transformations and scaling each input component to
theinterval [0,1], which isthe domain of Fuzzy ARTMAP inputs.

In order to investigate which input variables would be most useful for ARTMAP
neural network identification of land use change categories, several feature sets were
prepared using different transformations of the spectral data. Results of prior ARTMAP
remote sensing applications suggested that auxiliary variables (pixel location coordinates
and geographic zone designations) might also contribute to classification performance
(Carpenter, Gjga et al. 1997; Carpenter, Gopal et a. 1999). The transformed spectra
data from multiple dates and auxiliary variables were concatenated to create

multitemporal, multimodal input vectors for the neural network classifier.
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2.3.2 Model selection

Cross-validation was used to select both a linear transformation of the input data
and certain parameters of the ARTMAP model based on the transformed data. For each
of the four training/testing partitions, input variable transformations were selected by
cross-validated evaluation of three potential transformations. The Tasseled Cap
transformation applied to each image (Table 2.1) gave the best performance of the
transformations under consideration. This fixed transformation is desirable for many
remote sensing tasks because of its similarity to PCA performed on Landsat TM images
and dimension reduction to three variables that correspond closely to features of interest.
Performance also improved when the Brightness, Greenness and Wetness (BGW)
coefficients of this feature set were supplemented with geographic zone information and

image pixel locations.
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Input Description
vector
element
1-3 Brightness, Greenness, and Wetness coefficients from June 7, 1984 image
4-6 Brightness, Greenness, and Wetness coefficients from September 11, 1984 image
7-9 Brightness, Greenness, and Wetness coefficients from June 10, 1985 image
10-12 Brightness, Greenness, and Wetness coefficients from December 22, 1986 image
13-15 Brightness, Greenness, and Wethess coefficients from August 21, 1988 image
16-18 Brightness, Greenness, and Wethess coefficients from August 3, 1990 image
19-21 Brightness, Greenness, and Wetness coefficients from February 19, 1991 image
22-24 Brightness, Greenness, and Wetness coefficients from June 13, 1992 image
25-27 Brightness, Greenness, and Wetness coefficients from April 29, 1993 image
28 Pixel x-coordinate
29 Pixel y-coordinate
30 Geographic region indicator for delta (Boolean)
31 Geographic region indicator for desert (Boolean)
32 Geographic region indicator for coast (Boolean)
33 Geographic region indicator for wetlands (Boolean)

Table 2.1: Inputs to the ARTMAP neural network classification system. Although

ten images were available, the Brightness, Greenness, and Wetness (BGW)
coefficients of the Tasseled Cap transformation could only be computed for nine
dates due to a missing spectral band in one image.

Similarly, most parameters of the four neural network systems were determined

by evaluation on the respective training sets (Table 2.2).
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Partition | Partition | Partition | Partition
1 2 3 4
0 (baseline vigilance parameter) 0 0 0 0
a (choice parameter) .0025 .001 01 .001
V (number of voters) 3 2 5 4
Average number of training
presentations of each sitevia 190 70 106 62
representative pixels

Table 2.2: ARTMAP parameters determined by cross-validated evaluation on the
training data for four partitions of the dataset. All systems used a priori the
learning rate parameter $=1.0,match tracking control £=-.001, and CAM decision
rule power p=1.0. Instance counting (IC) was not enabled.

2.3.3 Training

Each ARTMAP network was trained by presenting a random sequence of pixels
from the training subset. A major challenge encountered with this database was that the
number of pixels in individual sites varied considerably, with training sites ranging in
size from 4 to 3,440 pixels. It seemed that adequate representation required that small
sites be adequately represented in the neural network training set while still exploiting
information contained in all pixels of large sites. This goal was achieved via a two-step
pixel sampling process. Each training pixel was determined by first selecting a random
training site and then selecting a random pixel from that site to produce a sample
unbiased with respect to the available sites. The duration of training was determined

during the model selection phase.

2.3.4 Mode testing (validation)
Multiple trained ARTMAP networks were combined to form a committee voting

system to improve classification performance and stability (Bishop 1995). Combining
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two or more networks in a committee and making a classification decision on the basis of
the average output of these committee members improves the expected performance of
neura network systems (Bishop 1995). The number of voting networks (V) was
determined during parameter selection, with each voter weighted equally. The net vote
for each class k was taken to be the average analog output across the V voters. A
classification decision was made by selecting the class with maximum average output
value.

The analog values assigned to pixels by the voting system may be thought of as
estimates of their fuzzy membership in various classes. Averaging these values across all
the pixels within a site gives membership estimates for the site. The system labels a four-
pixel testing (validation) site as belonging to the class to which it attaches the greatest

fuzzy membership value.

2.4 Results and discussion

The present analysis shows how an ARTMAP system can automate the
classification of land use change from remote sensing data, producing the map shown in
Figure 2.1. The user’s accuracy, defined as the rate of correct classification of test set
sites in the ground truth database, averaged 84.6% for the four systems (Table 2.3),
compared to user’s accuracy of 87.55% reported by Lenney et al. (1996). The producer’s
accuracy, which adjusts classification rates in proportion to the estimated true fractions
of land use change categories in the map, averaged 86.4%, as estimated using the method
of Card (Card 1982). During training, each neural network attempts to optimize user’s

accuracy, without knowledge of underlying class probabilities that might enable higher
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producer’s accuracy, such as the 95.85% obtained by Lenney et al. Note that Lenney et
al. used a different, overlapping assessment dataset and different testing methodology, so

these results are not directly comparable.

LEGEND
Desert/Coast
20 Reclamation
40
Wetland
Reclamation
” -
£ 80 Reduced
Productivity
100
Urban
120
140 Urbanization
160 | SRR §e) -
0 20 40 60 a0 100 120 140 160
km

Figure 2.1: Composite map showing ARTMAP classifications of land use changes,
after water had been separated from land via a linear threshold mask. Classes are
superimposed on a false color image acquired in 1993. Four systems, each of whose
performance has been determined by cross-validated testing, were combined to
create this map.
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Partition | Partition | Partition | Partition Mean of
four
1 2 3 4 ..
partitions
User’s accuracy (%) 89.9 854 84.3 79.1 84.6
Producer accuracy 885 86.9 90.2 80.1 86.4
(%) ) ) ) . .

Table 2.3: Performance of the ARTMAP land use change classifier on four cross-
validation partitions. The variability reflects sampling bias in the selection of
training and validation sets. Four different systems were determined from the
respective training sets using the same methodology; however, some parameters of
these systems varied widely. Furthermore, the validation accuracy was limited by
the number of sites available for this purpose, approximately 90 for each partition.

Confusion matrices (Table 2.4 and Table 2.5) provide details of system predictive
accuracy for each of the nine output classes. Two of the land use change classes,
urbanization and wetlands reclaimed, had insufficient data for training the neural
network. In particular, the entire ground truth dataset included only three wetlands
reclaimed sites. Not surprisingly, the learning systems consistently failed to identify these
sites when they had not been seen at al during training. Like the NDVI-based
classification system developed by Lenney et a. (1996), the ARTMAP classifier had
substantial difficulty distinguishing between urban and reduced productivity classes.
These classes have similar spectra signatures which are easily confused. The

separability characteristics of these data are revisited in Chapter 6 of this dissertation.
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Field assessments
Land use Sites §
classifications c £ £ - @
S 2 ¢ LH O 3
s = 29| B |87
N BE| S 38| & cE §
& 8 | 32| 8| B S| ISF B 3
2| 8|38 58 58 5| T gl £ B
) S| xxs <s|<s| | =g O )
Urban 83 63 2 10 3 2 3 75.9%
Urbanization 1 1 100.0%
Reduced productivity 20 2 1 17 85.0%
Agriculture in delta 147 4 6 41 132 1 89.8%
Agriculturein o
desert/coast 15 12 1 2 80.0%
Reclamation 13 2 10 1 76.9%
Wetlands reclaimed 1 1 0.0%
Other 78 1 6 3 68 87.2%
Overall
Total 358 69 10 31| 135 15 19 3 76
84.6%

Table 2.4: User’s Accuracy Assessment: a composite of the performance of the
ARTMAP land use change classifier on the four cross-validation partitions.
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Field assessments
Land use Sites 2
classifications c £ £ - 2
S g 9 ey S 5
8| g2 2 | 2g B | 8% g
A 889 3 5 S % S g 8
8 8 Ss2 B8g| B s Sd B
£ £ 88 58| 58 5| g £ | B
=) ) rg <°| <9 =3 0O S
5.055 0.689 o
Urban 25 % % 5.744%
Urbanization 0
Reduced 1.804 o
productivity 4 % 1.804%
Agriculturein 2.619 43.214 o
data 35 % o 45.833%
Agriculturein 4.411 o
desert/coast 4 o 4.411%
. 2.223 | 2.223
Reclamation 2 % % 4.446%
Wetlands 0
reclaimed
3.968 | 1.984 | 31.742
Other 19 % % % 37.694%
. 5.055 | 2619 | 2493 | 43.214 | 6.634 | 6.191 | 1.984 | 31.742
True proportions % % % % % % % %
, 100.0 0.00 | 72.36 100.0 | 66.49 | 35.91 0.00 100.0 | Overall
Producer’ s accuracy % % % % % % % % | $8.45%

Table 2.5: Producer’s Accuracy Assessment: This performance assessment is for
the system developed for the first cross-validation partition. Table 2.3 indicates that
the performance on this partition is typical.

A benefit of using ARTMAP neural networks to generate land use change
classification maps is that the confidence of classification decisions is readily available
via the variables g;, which provide the system’s class probability estimates. A map of
classification confidence similar to Figure 2.2 thus accompanies each primary map of
land use changes. Note in Figure 2.1 that large areas in the southwest quadrant of the

study area are incorrectly classified by the ARTMAP system as urban. Figure 2.2 shows
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that the ARTMAP system is least certain of its predictions in these regions. Identification
of the areas in which the network’s classifications are most likely to be incorrect could
guide manual editing of a land use change map. These areas could also be used to guide

collection of additional ground truth data.
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0.75

60
0.625

km

80

0.5
100

0.375
120 @
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0.125

Figure 2.2: Composite map showing confidence of ARTMAP land use change
classifications, with red indicating regions of lowest confidence. Four systems, each
of whose performance has been determined by cross-validated testing, were
combined to create this map. The confidence measure, which is based on ARTMAP
output values, reflects the degree of system confusion between two or more classes.

A key feature of ARTMAP neura network classifiers is that large-scale datasets

can be analyzed rapidly and automatically once enough sample field identifications have
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been made to form the training set. No ARTMAP system in this study required more than

18,000 input vector presentations during training.

2.5 Conclusions

Like other change classification methods, the ARTMAP system presented in this
chapter has attributes that recommend it for certain types of problems. In particular, the
multi-date ARTMAP neural network classifier accepts high-dimensional spectral
signatures containing features from a number of different dates. It produces both a land
use change classification map and a confidence map, based on internal parameters, which
can be used to evaluate the quality of the land use change classifications.

The methods described in this chapter are useful for identifying pixels that
correspond to known types of land use and land use change in the image database. A
second type of categorical change detection is the identification of new land cover
classes, as discussed by Abuelgasim et al. (1999). The latter type of detection was not
within the scope of this study but is a promising area for further application and analysis

of multi-date neural network change detection systems.



Chapter 3

Orthonormal basis function neural networks for pattern classification

3.1 Introduction

The rest of this dissertation explores how organization of artificial neurons into an
orthonormal frame simplifies the computations required to perform pattern classification
tasks. To this end, this and subsequent chapters develop computational procedures that
enable orthonormal basis function neural networks to be applied to a wide range of
classification problems.

Classifiers that utilize orthonormal bases are known within the statistical
literature, but their applicability is limited. Much work remains to be done to make
orthonormal basis function classifiers viable options for multidimensional classification
problems. Current methods for selecting a set of basis functions from a multidimensional
tensor product basis typically require selection of a cutoff frequency n-tuplet (Devroye,
Gyorfi et a. 1996). Such methods are inappropriate for problems of dimension greater
than two.

A key contribution of this dissertation is the adaptation of rules that rely upon
single-parameter cutoff determination to the selection of a set of basis functions from a
multidimensional tensor product basis. This allows one-dimensional stopping methods to
be applied to the construction of a pool of neurons that exploit the property of
orthonormality to represent a multidimensional problem space. The stopping methods

employed for basis function selection need to utilize a goodness-of-fit measure. For
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reasons of convenience, an estimate of the mean integrated squared error (MISE), a
common goodness-of-fit measure, is used for thiswork. It isimportant to note that there
are methods for model selection that do not require a stopping point, such as the stepwise
forward and backward regression used in certain additive spline fitting procedures
(Friedman and Silverman 1989; Friedman 1991; Stone, Hansen et al. 1997). These were
not pursued in this dissertation, although they provide an interesting direction for future
work (7.2.1).

A second, related novel aspect of this dissertation is the combination of a stopping
rule to determine an optimal set of basis function neurons to represent a particular
problem with a single-term exclusion rule to remove from the set neurons that do not
contribute sufficiently to system performance. Tarter and Lock (1993) have
demonstrated that the use of a single-term inclusion rule, which individually selects terms
to be included in a the orthonormal basis function model of a problem, results in an
excess of basis functions. Given a preselected set of basis functions, however, single-
term exclusion rules can be used to determine which of these basis functions do not
individually reduce the error of a system. Excluding such terms reduces the number of
parameters in a model and decreases the expected error. Thisis anew use of single-term
criteria based on measures of goodness-of-fit such as the MISE.

The MISE is frequently used to fit and evaluate orthonormal basis function
systems. Estimators of the MISE exist for density estimation using orthonormal systems,
and similar computations can be used for classification using the orthonormal

discriminant method presented by Devroye et al. (1996). Although other discriminant
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functions and estimators may be used, the method of Devroye was selected for this work

because of its simplicity and known asymptotic properties.

3.2 Background

Cencov (1962) introduced the use of Fourier series to represent probability
density estimates. Other orthonormal series density estimation and classification
methods use the same fundamental model. They differ in the bases used, such as the
Daubechies wavelet bases and the discrete cosine basis; the functions being estimated,
discriminant functions instead of density functions, for example; and the ways in which
coefficients are modified or eliminated to control the complexity of a model. Tarter and
Lock (1993) and Devroye et al. (1996) review many of these methods.

Specht (1971) made use of polynomial bases for probability density estimation.
Greblicki (1978) proved the asymptotic efficiency of Fourier series density estimates and
extended this result (Greblicki 1981) to the Hermite polynomial basis. Hall (1981)
advocated a cosine series (DCT) estimator, and Diggle and Hall (1986) aso mention the
L egendre series as an option with similar properties to the trigonometric bases. Devroye
et a. (1996) suggest other orthonormal bases that might be appropriate for pattern
classification, including the standard trigonometric, Laguerre, Haar, Rademacher, and
Walsh bases. Recent advances in wavelets offer such possibilities as the Daubechies D4
basis (Daubechies 1992; Strang 1993).

A problem that must be addressed to use orthonormal series density estimators as
well as related classification methods is how to determine which of the infinitely many

terms of a series estimator to include. A single-term inclusion rule was proposed by
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Tarter et a. (1967; Kronmal and Tarter 1968; Tarter and Lock 1993). Using this rule,
each term is considered individually for inclusion in an orthonormal series model based
on its contribution to the overal mean integrated squared error (MISE). The
insufficiencies of this rule were addressed by Hart (1985) and Diggle and Hall (1986),
who independently developed stopping rules to determine the term at which a series
estimator should be truncated. Efromovich (1999) uses a different estimator that is
similar to these. All of the stopping rules select a stopping term for orthonormal series
models by minimizing an estimate of the MISE. The orthonormal basis function
classifiers investigated in this dissertation use truncation methods (stopping rules and a
single-term exclusion rule) to select the basis functions that contribute to a model. It
would also be possible to use coefficient shrinkage methods (Tibshirani 1996; Hastie,
Tibshirani et a. 2001) to achieve this end. Such a use of shrinkage methods is discussed
briefly as adirection for future work (Section 7.2.2).

Many of these authors have studied classification by taking ratios of orthonormal
series probability density estimates for each class (Specht 1971; Greblicki 1978;
Greblicki 1981; Greblicki and Pawlak 1981; Greblicki and Pawlak 1982; Greblicki and
Pawlak 1983; Efromovich 1999). Devroye et a. (1996) introduced an alternative
classification approach in which a discriminant function is directly estimated using
orthonormal series expansions. For two-class problems, this has the potential to be more
accurate than taking a ratio of two density estimates as this discriminant combines

positive and negative class information in a single function.
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3.3 Orthonormal basis function neural network architecture

Orthonormal basis function neural networks are based on the feedforward
multilayer perceptron architecture. A three-layer architecture is employed by radial basis
function networks and orthonormal basis function networks, among many systems. In
this architecture, an input vector x is represented by corresponding nodes in an input
layer. These nodes output the values of the input vector elements. A hidden layer of
nodes implements a nonlinear mapping of the input vector elements. Typically a hidden

layer node represents a nonlinear function ¢, (x) of the input layer values. This function

may be fixed, asit isfor certain radial basis function neural networks (Haykin 1994) and
for orthogonal basis function neural networks, or the function may be adaptive, asit isfor
backpropagation neural networks (Bishop 1995). An output layer consists of one or more
nodes that compute network output functions by combining the results of the
computations performed by the hidden layer nodes. Typically an output layer node

implements aweighted sum
Yie(x) = 2 w8, (x) (3.1)
i=1

to perform this combination (Bishop 1995). In this equation, w,, isthe weight assigned

to the connection between hidden layer node j and output layer node k. It is common

for the output layer nodes to pass the result of the weighted sum through a nonlinear

function, in which case Equation (3.1) isinstead written

Y (x)=a [gwjkcbj (x)} . (3.2)
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A common problem with models such as (3.1) and (3.2) is that the high-

dimensional nonlinear transformation {¢j (x), ] :LZ,...} may make fitting the models a

computationaly intensive and time-consuming task. This is especidly true of
backpropagation neura networks, which can require tens of thousands of iterations to
converge to a stable model (Kooperberg and Stone 1999); however, radial basis function
neural networks and generalized additive models aso suffer from computational
difficulties imposed by nonlinear fitting.

A promising approach to building feedforward models is to use orthonormal basis
functions for hidden layer nodes. Specia properties of orthonormal bases enable all
parameters of a model of this type to be determined independently of other parameters
using fast linear computations provided that the model fits an appropriate objective
function, such as the MISE. Other models using the same architecture require iterative
computations or matrix inversion operations to solve equations of many dependent
parameters in the model fitting process. From a computational efficiency standpoint,
orthonormal basis function neural networks offer significant speed improvements over
other ssimilar models.

The next section discusses the properties of orthonormal series expansions in

general, including the properties that lead to this favorable result.
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3.4 Orthonormal series expansions
3.4.1 Properties of orthonormal bases on the domain of x
An orthonormal basis {¢j (x),] :L2,...} has three fundamental properties on the

domain = over which x isdefined. These properties hold whether = is unidimensional

or multidimensional and whether = is bounded or unbounded. First, the norm of every

function ¢, (x) isunity. For abasisin L,, this means that

[#,(x) dx=1 (). (33)

Second, the functions {¢j (x)} form an orthogonal set. In L,, thisimplies that

I¢j (x)¢ (x)dx=0 (Oj,k| k). (3.4)
Finally, if ¢/(x) isafunctionin L, then there exists a sequence of weights{aj} such that
i 2
lim j {w(x) ->ag, (X)} dx =0 (3.5)
= k=1

3.4.2 Orthonormal bases considered for pattern classification
3.4.2.1 Discretecosine basis
The univariate orthonormal discrete cosine basis on theinterval 0< x<1 isgiven

by the sequence:

$(x) =1

¢j (X) :\/ECOS[(J' -Drrx], j=2 (3.6)
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The first nine terms of this sequence are shown in Figure 3.1.

Figure 3.1: First nine functions of the discrete cosine basis

3.4.2.2 Legendre polynomial basis

The Legendre polynomial basis offers a representation in which linear, quadratic,
and higher-order polynomial relationships require a finite number of nonzero
coefficients. This is intuitively useful for data that may have strong linear or quadratic

trends. Likethe cosine basis, the Legendre basis has support over the entire interval.

The orthonormal series of Legendre polynomials on [—Ll] is given by the

Rodrigues representation:
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(3.7)

(Gradshteyn, Rhyzik et a. 1994; Weinstein 1999). To conform to the conventions of this

dissertation, the orthonormal Legendre polynomials on the unit interval may be

constructed by trandation and rescaling of this series, and the constant term may be

included:

¢, (x) =1
¢, (x)=42]+1P_ (2x-1), |=234,...

The first nine terms of this sequence are shown in Figure 3.2.

Figure 3.2: First nine functions of the Legendre polynomial basis

(3.8)
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3.4.2.3 Haar wavelet basis

The Haar wavelets are shifted and rescaled variants of the function

1 O0< xsl
2
1
Ax)=41-1 E<xsl (3.9
0 otherwise

Let
@, (9 =¢g2x-1), k={012.}, 1={01..,2" -1 (3.10)
(Strang 1993; Weinstein 1999). These and the constant function form the univariate Haar
basis on the interval [0,1] . Normalizing, converting the double subscript k,I to asingle
subscript |, and including the constant function as the first term yields the sequence:
#,(x) =1

¢,~(X):(x/§)k¢f(yl(x), j=2, where

k=|log,(j-1)]
| =(j-1)-2"

(3.11)

The first nine terms of this univariate Haar basis on [0, 1] are shown in Figure 3.3.
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Figure 3.3: First nine functions of the Haar wavelet basis

As the Haar wavelets have local support, they are intuitively best for representing
functions with local variations. In a classification problem, this might be the case if local
regions of the feature space need to be subdivided between multiple classes.
3.4.2.4 Daubechies D4 wavelet basis

Another orthonormal wavelet basis with local support is the Daubechies D4
wavelet basis (Daubechies 1992). Like the Haar basis, this should be well suited for
tracking classification functions that vary locally; however, the D4 basis presents a
potential advantage. The Daubechies wavelet has two vanishing moments (Strang and

Nguyen 1997):
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j ’ w(x)dx =0
- (3.12)
I_Z xw(x)dx =0

All of the wavelet functions are orthogonal to both a constant and a linear term, so linear
global characteristics of a classification function may be combined with the local
characteristics represented by wavelets.

These wavelets are multiresolution, meaning that a basis is formed by a single

mother wavelet function w(x) and the set of all dilated and translated copies of this
function {W(ij—k)|Dj,k} . Let

V\/jyk(x)zw(zjx—k) (3.13)
The mother wavelet function W, ,(x) is normally defined on the interval [—L 2] . Toform

an orthonormal basis on theinterval [0,1], let

VAW, (3x-1)

wo,o(x)_ > ,
\/HWO’O(Sx—l)] dx

-1

(3.14)

be the mother wavelet W,, trandated to [0,1] and normalized. The wavelets with

support on thisinterval are then

wi,k(x) :l/lo,o(zj (X_F:NKD’ (3.15)

where j=0,1,2,... and k=0,1,...,32' -3.
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The Daubechies D4 wavelet basis (Daubechies 1992), along with its two

vanishing moments, is incorporated in the following sequence of orthonormal basis

functions on the interval [0,1]:

The first nine functions of this sequence are shown in Figure 3.4.

¢, (x)=1

¢2(x):2\/§(x
85 (%) =005 ()
#,(X) =¢h1,(x)
@5 (x) =411 (%)
Ps (X) =Y, (X)

P,(X) :‘//2,1()(

(3.16)
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Figure 3.4: First nine functions of the second-order (D4) Daubechies wavelet basis
in one dimension

3.4.3 Tensor product construction of a multivariate orthonormal basis
A multivariate orthonormal basis can be constructed from univariate bases by
taking the tensor product of the vectors of univariate basis functions. A bivariate tensor-

product basis {¢,,,(x,y), mn=12,..}, for example, can be made from the univariate
bases {@,(y),m=12,..} and {¢,(2),n=12,..} asfollows (Efromovich 1999):
{P0nn (V. D =@, (V) (2), mn=12..} (3.17)

It becomes difficult to index subscripts for elements of bases in more than two

dimensions. Although it is possible to denote the elements of a tensor-product basis by
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their multiple subscripts, this notation is often cumbersome. It is possible to map the

functionsin atensor-product basis to univariate indices in a one-to-one manner.

{fn. (V,2..), mn,...=12..} (3.18)
can simply be written
{¢,(x), 1=12..}, (3.19)
where
x=(y,z,...).

Employing the vector notation x for the multivariate function arguments simplifies the
mathematical notation and highlights the parallels with univariate orthonormal series
expansions. The notation in (3.19) is not dependent on the dimensionality of the problem
and can represent orthonormal bases for problems of arbitrary dimensionality. Such a
mapping of indices from a vector to a scalar does not specify the ordering of basis
functions with respect to the scalar index. Because the series will be truncated, the actual
ordering of terms is an important consideration. The goal of ordering the componentsis
to assign low indices to components that are likely to be useful so they do not fall beyond

the truncation point and hence out of a model.

3.5 Basis function selection utilizing stopping rules

Certain problems naturaly arise when using orthonormal series expansions.
Foremost among these problems is determining after how many terms a series expansion

should be truncated. In an orthonormal basis function neural network, this determines the
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complexity of the basis function layer. This section discusses stopping rules used in this
dissertation.
Because the basis functions utilized are multidimensional, the approach

considered here will be applied to complexity measures developed in Section 3.6.

3.5.1 Univariate stopping rules

One-dimensional series expansions require a single truncation point. In a
trigonometric series expansion, the truncation point determines the degree of smoothing
of the fit to the underlying data (Devroye, Gyorfi et a. 1996). Including an excessive
number of terms will result in a model with an overfit, whereas including an insufficient
number of terms will result in amodel with an underfit.

Univariate stopping rules based on estimates of the MISE have been well studied
in the statistical literature. Hart (1985) and Diggle and Hall (1986) both developed
unbiased estimators of the MISE for Fourier series density estimates. All terms up to and
including a cutoff term T are included in the estimator after the stopping rule is
implemented. T is selected such that it minimizes an unbiased estimator of the MISE; in
practice, thisinvolves aline search of potential stopping points (Tarter and Lock 1993).

An MISE-based estimator for classifier systems, such as that introduced in this
dissertation, can serve the same purpose for orthonormal basis function classifiers. For a
one-dimensional problem, a cutoff point could be determined by choosing the set of
terms, inclusive of al terms up to a given frequency, which minimizes the estimated

MISE. Thisiswell-defined for trigonometric series such as the discrete cosine transform
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(DCT). It is problematic for other orthonormal series for which frequency is not as

meaningful.

3.5.2 Multivariate stopping rules

Multivariate orthonormal series expansions require a more elaborate formulation
of stopping rules. Efromovich’s approach (1999) istypical. He selects apair of stopping
frequencies for a bivariate problem. This leads to a rectangular frequency window,
which will contain low-frequency basis functions at one corner and high-frequency basis
functions at the opposite corner. For a high-dimensional problem, selecting an ordered n-
tuplet of stopping frequencies specifies a hyperrectangular frequency window that
consists aimost entirely of high-frequency basis functions that are the tensor products of
one-dimensional low-frequency basis functions. The complexity of such a model is
evidence that this method is particularly susceptible to the curse of dimensionality. Itis
clear that other approaches to selecting multidimensional frequency cutoffs need to be
considered.

This dissertation examines severa possible methods of selecting basis functions
in a multidimensional frequency space. These include a method developed for this
dissertation that assigns tensor product basis functions to frequency classes according to
the product of the indices of their component one-dimensional basis functions, resulting
in a hyperbolic frequency cutoff with a single cutoff parameter. Other possibilities

include spherica and linear additive frequency cutoffs.
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3.6 Scalar indexing of multidimensional tensor product bases

Most authors to date have studied orthonormal series density estimation and
classification using a rectangular window. A stopping ruleis used to determine either a

maximum index value M, for each dimension d or a single maximum index value M

for al dimensions. While these approaches may work from problems of low
dimensionality, they are not appropriate when the dimensionality can cause an
exponential explosion in the number of coefficients. Moreover, some of the tensor
product basis functions included in a rectangular window are enormously complex,
involving many interacting terms in different dimensions. Comparatively simple basis

functions of index m, =M, +1 or m, =M +1 are excluded.

This section suggests ways in which multidimensional tensor product basis

function indices can be mapped to a unidimensional index j. The aim isto construct a

mapping that enables the application of unidimensiona stopping rules and includes
tensor product basis functions in order of complexity. Such mappings are dependent on
the definition of complexity used. Each of the following primary ordering criteria
implements a plausible measure of complexity. When mapping tensor product basis
functions to a unidimensional index, if two functions have a different primary criterion
value, the function with the higher value will aways be assigned a higher unidimensional

index j.
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3.6.1 Linear complexity criterion
The linear ordering is applicable to both trigonometric and polynomia bases. It

uses asits primary criterion r the sum of the multidimensional indices:

r= ED: m, (3.20)

d=1
For a polynomial basis, this implements a familiar complexity measure, the

degree of amultivariate polynomial, plus a constant equal to the number of dimensions.

3.6.2 Spherical complexity criterion

The spherical ordering uses as the primary criterion:

r =zD:(md -1)* (3.22)

d=1
This corresponds to the coefficients of the tensor product of trigonometric polynomials

after application of the Laplacian.

3.6.3 Hyperbolic complexity criteria
3.6.3.1 Definition of zero-crossing order

Let the zero-crossing order (ZC order) of a univariate basis function with support
on the interval be the number of subintervals separated by zero crossings, so that the ZC
order is equal to one plus the number of zero crossings in the interval. For example, the
constant basis function has ZC order one, and the half-cosine basis function has ZC order

two. The Haar mother wavelet also has ZC order two.
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3.6.3.2 Hyperbolic complexity criterion for trigonometric and polynomial bases
The hyperbolic ordering differs from the linear ordering in the primary criterion

used. Instead of the sum of indices, the primary criterion is the product of indices:
D
r=f|m,. (3.22)
]

Provided that the ZC order for unidimensional basis functions is equal to their index

values, thisisidentically the product of the ZC orders of the component functions:
D
r=[12,. (3.23)
L_J g

where Z, isthe ZC order of the tensor product component in the d th dimension. The

primary criterion in Equation (3.23) is equal to the number of regions of alternating sign
separated by zero crossings in the tensor product basis function.
3.6.3.3 Hyperbolic complexity criterion for wavel et bases

For wavelet bases, the hyperbolic complexity criterion needs to reflect that the
contraction operation on a wavelet effectively doubles its complexity by halving its
support. Two daughter wavelets placed side-by-side would, when combined, have the
same support as their mother wavelet but would have twice as many zero crossings. A
multiplicative complexity measure should therefore be inversely related to the support of

abasis function:
D
Zd
r=|1=", (3.29)
s

where S, is the length of the interval of support for the tensor product basis function

component in the d th dimension. Equation (3.24) is also applicable to the special case
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of (3.23) in which al basis functions have support over the entire unit interval.
Treatment of the ZC order of a univariate wavelet function is thus analogous to that
defined for trigonometric and polynomial bases above.

Some wavelets, such as the Daubechies D4 wavelet, have a large number of zero
crossings, while effectively partitioning the interval into a small number of subintervals
of aternating sign. The Daubechies D4 wavelet, for example, has four clearly
identifiable subintervals of aternating sign, and none of the remaining subintervals
approach these four in length or amplitude. Assigning the Daubechies D4 mother
wavelet a ZC order of four more accurately reflects its capacity to separate classes than
counting the actual number of zero crossings. The Daubechies D4 wavelet was therefore
treated in this dissertation asif it had a ZC order of four. The practical impact of thisis

to determine the relative complexity of the linear and mother wavelet terms.

3.6.4 Ordering of functions with the same primary complexity criterion

Within a class of functions with the same primary criterion value, a secondary
criterion is used to determine the ordering. If each variate were equally likely to be
informative, it might be arbitrary to impose an ordering on basis functions of the same
complexity. Assuming that the first variate is the most useful for classification and the
last variate is the least useful, a condition that using canonical variates asin Section 4.2.3
ams to mest, it may be preferable first to include tensor product basis functions that
represent the greatest complexity within the first variate. Within a class of tensor product
basis functions with the same primary criterion, therefore, reverse lexicographic ordering

isused. This assigns the lowest unidimensional indices to tensor product basis functions
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with the highest first dimension indices m, representing the greatest complexity along

that dimension.

3.7 An MISE-based measure for Devroye’s discriminant method

The method of orthonormal series expansions has been employed extensively for
density estimation. As reviewed by Devroye, Gyorfi et a. (1996), the method was
initially developed by Cencov (1962) and further developed by numerous authors. Tarter
and Lock (1993) and Efromovich (1999) have written books that form a comprehensive
resource for the practitioner who desires to implement orthonormal series expansions for
density estimation. They provide limited insights into how similar methods may be
applied to multivariate problems and classification problems. For instance, Efromovich
shows how separate density estimators for each subpopulation corresponding to a

particular class may be compared to make a classification decision.

3.7.1 Mod€

It is assumed throughout that {¢j (x),] :l2,...} form abasisin L2. The random

variable or vector X and the random variable Y are assumed to be independent and

identically distributed (i.i.d.).

3.7.2 Devroye' s discriminant function
Devroye et a. (1996) present an elegant discriminant function that, for atwo-class
problem, can be estimated by a single function of all of the available data values.

Devroye' s discriminant function is given by



a(x)=p(x)[2P(Y =1| X =x) -1], (3.25)
where X is a random variable or vector and Y is the random variable for the class
associated with the data X , and p(x) is the probability density of X at x. Note that,
since

p(x) >0 (Dx) ,
the discriminant function takes on positive values only where
P(Y=1|X =x) >P(Y #1| X =x). (3.26)

This leads to the discrimination rule:

.oy _|1 ifa(x)>0
Y (X)_{O otherwise, (3.2

where @ (x) isan estimate of Devroye's discriminant function a(x).

Devroye et a. prove certain statistical properties of an estimator of a(x) , but as

their work on this subject is limited to discrimination of two classes, they do not present a
multivariate classification system that uses this discriminant function and estimator as its
foundation. Developing this estimator and its associated statistical properties into a
usable method for fitting and selecting orthonormal basis function neural network models

is the scope of this section.

3.7.3 Mean of an orthonormal series-based classifier

The coefficients for the orthonormal expansion of Devroye's discriminant

function a(x) using the basis{¢j (x),] :L2,...} are given by
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a = £¢] (x)a’(x) dx. (3.28)

This has the estimator (Devroye, Gyorfi et al. 1996)

n 1&
& =132y -1, (x). 329)
i=1
where
1 if iOClass1
i:{ . (3.30)
0 otherwise

and N isthe number of samples.

The estimated expansion coefficients &, are unbiased estimators of the true

expansion coefficients a; :

4] = E{%i{zyi -1¢ (xo}
= j E[2Y -1| X =x]@, (x) p(x)dx
:I[zp(v =1 X =x) -1 p(x)¢, (x) dx (3.31)

= j a(x)p, (x)dx

E[&]=4

3.7.4 Variance of éj

The variance of éj can be estimated from the sample variance.
Let
u; =2y, ~D¢;(x)) (3.32)

Then
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Var () = %Zn:Var (u;) (3.33)

Var(u;) has the unbiased estimator derived from the sample variance (Mendenhall,

Wackerly et al. 1990):

@(uji) zﬁ-Z(uji _u_ji)2
- . - (3.34)
Var(uji) :m;(uji _aj)z
Thus,
— 11 .o
Var (&) —Hn—_lzl:(uji -4) (3.35)

is an unbiased estimator for Var (a;) .

3.7.5 The expected value of &’

~ 2y _ _in in
E(4°)=E .U, (nZu”H

18 n)(n-1
=E| =2 (2y, -1)2¢;(>9)2}+#aj2

| n° = n
sincethe u; are assumed to bei.i.d.

E@E’) = E[n—lzi(Zyi -1’g, (xi)z} +nT_1aj2 (3.36)
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Since (2y, -1)* =1 (Oy,),

E@%) = E{n—lzi@ (xi)z} +'"T'1aj2 (3.37)
A2\ 1 2 n_l 2
E(&%) ==[¢,(x)* p(x)dx +—a, (3.39)
nd n

By construction, this has the unbiased estimator:
2o 13 n-1
E(4%) == ¢,(x)" +—a7. (3.39)
n° 4= n
This may not be used to estimate E(éjz) if a, is unknown, but it proves useful in

estimating a,°.

3.7.6 An estimator for a,’

Efromovich (1999) shows a useful technique for unbiased estimation of the squares of

coefficients.  This technique is readily adapted for orthonormal series based

classification. a,® can be stated in terms of Var(4,) and E(4,°). From the unbiased
estimators for both of these terms follows an unbiased estimator for ajz.
Var (éj) = E(é.jz) - E(éj)2

=| 2 ¢,007p)dx +22a 7 | -a”
ni n
Var (8) == [ ¢, (" p(x)ck ~~

a” = [¢,(x)’ p(x)dx ~nVar (&) (3.40)
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Since unbiased estimators for both right-hand terms of Equation (3.40) are known, it is
possible to construct an unbiased estimator for aj2 by substituting the estimators for these

terms:

—~ n

a’=134,(x)’ ~nvar() (341)

i=1

3.7.7 Mean integrated squared error (MISE) of an orthonormal series-based classifier

Using the uniform weighting function as in Tarter and Lock (1993), the mean

integrated squared error (MISE) of the estimator & (x) is defined as:
M|SE[5’(X):| = E“:a (x)-a (X)]2 dx. (3.42)

By Parseval’s Identity (Papoulis 1987), this can be written in terms of the expansion

coefficients:

MISE[G(x)] =3 (a, -4, ) (3.43)

3.7.8 Variance and squared bias terms of MISE,,
Let W={w,w,,..} be a set of zero-one weights that determine whether

corresponding terms of the expansion {4,,4,...} contribute to the estimate
ay, (x)=2 wag, (x) (3.44)
1

after a truncation of terms, where w, =1 indicates that the jth term of the expansion is

included in the estimate, and w, =0 indicates that the jth term is excluded. For example,
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W could result from truncating a Fourier or related series at a particular frequency,

setting the w; corresponding to higher frequenciesto zero. Define

MISE, =MISE| 4, (x)]. (3.45)
Then
MISE,, :iVar (wa,) +i(1—wj)af. (3.46)

Determining the MISE would require the estimation of infinitely many terms in
Equation (3.46). Although it isimpossible to compute afull infinite series estimate of the
MISE, a relative MISE measure can be computed quite readily for finite sets J. This
relative measure can be used as atool for model selection. If the relative MISE is defined

as
RMISE, =MISE, ~MISE,, , ., 1. (3.47)

then

00 00

RMISE, =Y wvar (&) +Y (1w, )a? - @’

=1 =

- (3.48)
RMISE, =Y w, | Var (4 ) -2’ |
=1
RMISE,, thus has the unbiased estimator
RMISE, = 3w [\Ta\r(éj)—gf] (349)
j=1

This is the MISE-based measure that is employed throughout the remainder of this
dissertation for basis function set selection using a stopping rule and model simplification

using asingle-term exclusion rule.
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3.7.9 Application of RMI SE to model selection: seriestruncation (stopping)
The cumulative MISE of a model with ordered terms can be minimized by
selecting a stopping term that minimizes the RMISE, an equivalent measure up to a

constant:

I':argmin(RMISEW), (3.50)
y 14
where W, isthe set of basis functions that includes the  ordered terms, i.e.

L sy
w, = =0,12,... 3.51

3.7.10 Application of RMI SE to model selection: single term exclusion

Tarter, Holcomb and Kronmal (1967) initially suggested a single-term inclusion
rule for term selection. They subsequently discovered (Tarter and Kronmal 1976; Tarter
and Lock 1993) that deciding whether to include terms individually leads to inclusion of
spurious high-order terms. However, a similar procedure inspired by the single-term
stopping rule is a promising method of achieving significantly higher levels of
compression in an orthonormal basis function model.

Regardless of the method used for stopping, including certain terms in the model
may increase both the expected MISE and the complexity of the model. The RMISE is
the sum of the individual terms in Equation (3.48), each of which corresponds to one
term in the orthonormal series expansion. If the estimator corresponding to the jth termiis

positive:

w |Var (8)-a: | >0, (352)



51

then the expected contribution of the jth term is an increase in the MISE of the model.
Omitting the term decreases both the complexity of the model and the expected MISE

error rate.

3.8 Evaluating the performance of classification methods

It is important that statistically valid experiments be performed to evauate the
performance of any pattern classification algorithm. Fortunately, there are severa
sources for standard benchmarking problems and techniques. These sources include the
University of California Irvine (UCI) machine learning repository (Hettich, Blake et al.
1998), the University of Toronto’'s DELVE suite for statistical evaluation of machine
learning algorithms (Rasmussen, Neal et al. 1996), and certain problems that have been
formalized and popularized by authors such as Ripley (1996).

The strengths and weaknesses of a given algorithm can be probed by comparing it
to alternative methodologies. In particular, this dissertation compares orthonormal basis
function neura networks to the k-nearest-neighbors (KNN) algorithm, backpropagation
neural networks, and two support vector machine (SVM) agorithms. KNN is a simple
and robust classification algorithm which is frequently used as a point of comparison.
Backpropagation neural networks (Werbos 1974; Rumelhart, Hinton et al. 1986) are
multilayer perceptrons that use nonorthogonal basis functions of a particular functional
form, typically a sigmoid function. Backpropagation is a popular mean squared error
minimization method that is computationally intensive. The backpropagation agorithm
utilizes an iterative nonlinear optimization to adaptively minimize the mean squared error

of a model. SVMs employ support vector regularization, a nonlinear regularization
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method that is applicable to basis expansions (Vapnik 1995; Scholkopf, Burges et al.
1999). Asiis the case for the linear regularization used for orthonormal basis function
neural networks, support vector regularization minimizes an objective function in the
gpace of a basis function expansion. The techniques differ in many respects, however,
including the types of objective functions used, the methods of representing basis
function expansions, and the applicability to particular basis function expansions.

A problem with these benchmark comparisons is that many of the standardized
benchmark problems are small databases, containing at most a few thousand exemplars.
Such databases do not demonstrate the applicability of algorithms to large, real-world
problems. The problem of identifying land use changes in the Nile River delta from a
sequence of ten satellite images (Lenney, Woodcock et al. 1996), described in further
detall in Chapter 2 of this dissertation, is a useful platform to test orthonormal basis
function networks on a larger scale. It is a real-world database consisting of eight
different classes and sixty-five-dimensional data vectors. Orthonormal basis function
networks were used to classify land use changes on the same database of images
employed for ARTMAP neural network classification of land use change. This database
contains approximately 25,000 pixels for which land use classifications are known.
Millions of additional pixels must be classified to generate a map of land use changes in

the study area. This demands fast testing performance.

3.8.1 Benchmarking results
One problem that illustrates certain properties of classifiers is Ripley’s two-

dimensional synthetic database (1994). This database is popular due to the ease of
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visualization. Since the database is synthetic, the Bayes error rate of 8.0% is known. The
data consist of 250 exemplars drawn from four bivariate Gaussian distributions. Two of
these Gaussians correspond to each of the two classes.

The orthonormal basis function neural network methodology outlined above
results in a discrete cosine basis model with 21 basis function units. Fitting this model is
a speedy process. all of the computations involved take a fraction of a second on atypical
Linux workstation. The error rate on an independent test set is 10.4%, which is
comparable to the results using various other pattern classifiers reported by Ripley. As
seen in Figure 3.5, the contours of the orthonormal basis function neural network model
(solid lines) closely follow the optimal decision boundary (broken lines) in high-density
regions of the decision space. Note that there are large regions in the decision space
where this model yields the incorrect class, however, the likelihood of data appearing in
these regions is expected to be very low. This is a data sampling problem: with a
hundred or a thousand times more data points, the fact that this is a consistent estimator
may cause the problem to disappear entirely. With sparse data requiring a tradeoff
between being accurate in much of the decision space and being accurate where data are
most likely to appear, this methodology will select basis functions that optimize the
model where there is a higher density of data points.

If less complex decision boundaries were desired, one approach not investigated
in depth in this dissertation would be to employ an appropriate regularization term to

penalize models with complex boundaries.



Decision boundary -- 21 basis functions
T T T

Figure 3.5: Decision boundaries of an orthonormal basis function neural network
classifier applied to Ripley's synthetic dataset. The error rate on the test set is
10.4%. The Bayes decision criterion (dashed lines) gives an error rate of 8.0%



Chapter 4
Linear Preprocessing and Postprocessing to Improve Orthonormal

Basis Function Neural Network Models

4.1 Introduction

Several important problems arise when the orthonormal basis function classifiers
of Chapter 3 are applied to classification tasks. This chapter considers rotation of data,
dimension reduction, and extension of atwo-class algorithm to multiple classification.

Rotation of data prior to fitting with an orthonormal basis function needs to be
considered because the functions in the system are fixed. The model is dependent on the
orientation of the data with respect to the basis functions. Because of this, it is possible
that changes in the orientation will have a significant impact on the goodness of a model
as measured by classification rate. Common approaches to data rotation and dimension
reduction include Principal Components Analysis (PCA) and Canonical Variate Analysis
(CVA) (Mardia, Kent et al. 1979). This chapter considers both of these methods and
introduces Extended CVA, which combines CVA with PCA when the number of
dimensions equals or exceeds the number of classes.

The number of dimensions used as input to an orthonormal basis function network
can also be an important factor in the goodness of a model. If too few dimensions are
used, the discarded dimensions may contain important information. Using too many

dimensions can also degrade the performance.
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Asreviewed by Bentler and Y uan (1996), one approach to dimension reduction is

to test the hypothesis that the smallest g eigenvalues of the data covariance matrix X are
equal for q=2,3,...,D using Bartlett’'s test (Bartlett 1954). However, in practice it is

often the case that few dimensions have statistically identical eigenvalues and can be
eliminated in thisway. Bentler and Y uan observe that instead, eigenvalues of real data,
when plotted, tend to fall sharply from the largest values, then trend linearly toward the
smallest value, and that Cattell’s scree test (1966) makes use of this to select principal
components that are most likely to bear useful information based on their eigenvalues.
The portion of the eigenvalue plot that trends linearly after the sharp drop is designated as
“scree’, excess dimensionality that can be eliminated from amodel. A failing of this test
is that it is a subjective visual test not easily implemented as part of an algorithm.
Several automated methods for performing a scree test have been proposed (Bentler and
Yuan 1996). This chapter proposes another such test, designed to be less stringent in its
criterion for an eigenvalue to be considered scree.

A third problem investigated in this chapter is that of extending a two-class
method to multiple classes. Devroye's discriminant estimator yields appropriate decision
boundaries for two-class problems, but such a simple decision rule is insufficient in a
multiclass context. Masking (Hastie, Tibshirani et al. 2001) can occur, leading to poor
performance when bivariate decision rules are extended to three or more classes. One
solution is to employ linear discriminant methods appropriate for multiclass problems on
bivariate discriminant estimators. This chapter shows that linear discriminant analysis

(LDA) postprocessing is equivalent to optimal scoring criteria that minimize the average
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squared residual (ASR) of a model when the underlying model is fixed and only the

postprocessing parameters are permitted to change.

4.2 Linear preprocessing for data orientation and dimension reduction

4.2.1 Principal components analysis (PCA)
4.2.1.1 Computation of principal components

Principal components analysis (PCA) computes an ordered set of orthonormal
vectors onto which a data matrix X can be projected such that the variance of the
projection onto each successive vector in the set is maximal (Ripley 1996).

Ripley (1996) gives the following simple explanation for how these may be
obtained for an nx p datamatrix X consisting of row vectors x; :

Thisis done by taking the singular value decomposition of the data matrix

X (Golub and Van Loan 1989) X =UAV', where A is a diagonal

matrix with decreasing non-negétive entries (A,), U is an nx p matrix

with orthonormal columns, andV isa px p orthogonal matrix. Then the

principal components are the columns of XV .
The first g columns of XV contain the first q principal components of X, which
maximize the variance of the projection of X onto q dimensions.
4.2.1.2 Useof principal components for pattern recognition

Because the principal components of X are not invariant to linear scaling of X,

it isimportant for the dimensions of X to be in comparable units. Where the units of X
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are not directly comparable, it is customary to rescale the columns of X to have unit
variance and zero mean.

Let V, bethe matrix consisting of thefirst g< p columnsof V:

V.=V Iq 4.1
oy

where I, isthe gxq identity matrix. For any such q, Xq =XYV,, thefirst g unscaled
principal components of X, can be used asinstead of X itself asthe input data for neural

networks and machine learning agorithms. For the remainder of this dissertation,

PCAq, where g is given as an integer value, will denote the transformed input data
matrix X, obtained in this manner.

Results of using PCAq as the input to orthonormal basis function networks are

reported later in this chapter, where this method is also compared to using the

untransformed data X and other linear transformations of X .

Note that PCA does not take into account the class labels y, associated with the

rows of X. Thisis a shortcoming of the use of PCA for classification problems. The
directions which explain the maximal variance in the input vectors are not necessarily the
directions that are most useful for classification. For classification problems, canonical
variates (Mardia, Kent et al. 1979), to be discussed in Section 4.2.3, may be a more

appropriate linear transformation of the data matrix.
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4.2.2 An automated scree test for principal component dimensionality

A problem that often occurs with PCA is that the principal components with the
largest eigenvalues are helpful for building a model while the principal components with
the smallest eigenvalues act as distractors. As reviewed by Bentler and Yuan (1996),
Cattell (1966) developed a scree plot method for determining the number of principal
components to keep in a dimension reduction procedure. The method is so named
because the plot of eigenvalues often resembles a steep mountain slope with scree or
rubble collected at the bottom. The larger eigenvalues that comprise the steep slope are
interpreted in Cattell’'s method as “important”, and the corresponding principal
components are kept. Cattell observed that the remaining eigenvalues formed a shallow
slope that was approximately linear. His test is a visua test that requires the user to
identify the elbow of the scree plot, the point at which the steep slope ends and the scree
begins.

Bentler and Yuan (1996) developed a test for the linearity of the smallest
eigenvalues. While useful, this test may be sensitive to small nonlinearities in the scree.
In this section, an alternative test for the approximate linearity of eigenvalues is
proposed. This test determines whether an individual eigenvalue is consistent with a
linear trend in eigenvalues by measuring its influence (Weisberg 1985) on a linear fit to
the sequence of eigenvalues. This is a formalization of Cattell’s scree test that replaces
the subjective analysis of plots with a ssimple objective test for the similarity of an
eigenvalue to the trend in successive eigenvalues.

A standard measure of influence is Cook’ s distance (Cook 1977),
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D = (ﬁ(i) _B)T (VTV)(ﬁ(i) _B)
p'o’

: 4.2

where p'=2 is the number of parameters estimated in linear regression on a single

scalar variable, ﬁ:{’gf’ contains the estimated slope ([3’1) and intercept ( [?O)
B
parameters, and ﬁ(i) is the estimated parameter vector when the i th data point is omitted

from the regression on the data matrix V .

Let {A} bethe set of eigenvalues of adata covariance matrix in descending order
of magnitude. Let A, be the influence of
vi=[1 A], (4.3)
corresponding to the i th eigenvalue A, , on the linear regression model
y,=vipte, |2 (4.4)
of the eigenvalues with index greater than or equal to i. If A, islarge, thisisindicative

of an eigenvalue that is much larger or smaller than the trend of successive eigenvalues.
Since eigenvalues that are much larger than typical eigenvalues will have large values of
4\, , it may be possible to use this as a measure of the importance of an eigenvalue in a

way that corresponds to visual interpretation of a scree plot. Let iy, betheindex of the

first eigenvalue that does not exceed a predefined influence threshold:

ielbow = arg mlnl(A| < I_elbow) (45)



61

It is hoped that appropriate selection of I, ,, will result in automated determination of

scree plot truncation points similar to those obtained by visual inspection.

Bentler and Yuan (1996) demonstrate their linear trend (LT) method for PCA
model selection on two published psychological databases. The Lord (1956) database, as
republished by Bentler and Yuan, concerns student performance on a variety of
psychological tests yielding 15 variables. The eigenvalues of the covariance matrix are
plotted in the upper half of Figure 4.1. The lower half of the figure plots the

corresponding values of A.. Bentler and Y uan conclude that “the last 13 eigenvalues do
not show a linear trend as assessed by the LT- )(5_2 test statistic, while the last 12, and

certainly the last 11, eigenvalues do exhibit a linear trend.” Using the influence-based
method of this section, a wide range of values for I, leads to the conclusion that the
last 11 eigenvalues are scree. This moreover agrees with a visual inspection of the scree

plot, in which either the fourth or fifth eigenvalue would be determined to be the elbow

location.
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Figure 4.1: Automated scree plot analysis for the psychological test data of Lord
(1956). A wide range of thresholds I, , lead to the determination that i, , =5.

This agrees with both a visual inspection of the scree plot and the linear trend (LT)
eigenvalue analysis method of Bentler and Yuan (1996).

The 24-dimensional psychological test data of Holzinger and Swineford (1939),
also as published in Bentler and Y uan (1996), are problematic for both a visual scree test

and the automated method based on the influence measure A, . The location of the elbow

in the sequence of eigenvalues is ambiguous, as seen in Figure 4.2. The threshold range

for A that best corresponds to visua selection of the elbow may be

0.398< T ,,, <0.839, which places the elbow at the ninth eigenvalue. The LT method

(Bentler and Y uan 1996) finds alinear trend commencing with the twelfth eigenvalue.



63

From these preliminary studies, it appears that an automated scree test method
based on the influence of eigenvalues corresponds well with the visual scree plot method.
A threshold value such as I, = 0.5 may lead to the selection of components that are
reasonably close to those selected by visual inspection and the existing LT method.
Further studies might both determine the statistical properties of such a threshold and
investigate whether a single value for I, is applicable to a wide variety of datasets
(Section 7.2.3). Where an automated scree test is used on the Adult dataset later in this

dissertation, the threshold I, ,, = 0.5 is employed.
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Figure 4.2: Automated scree plot analysis for the psychological test data of
Holzinger and Swineford (1939). A threshold value [, > 0.839 is aggressive,

discarding components that a visual inspection of the scree plot would likely include.
More reasonable elbow points are given by the threshold ranges
0.398<T,,,, <0.839 and 0.071<T,,, <0.398. Neither is far from that given by the

linear trend (LT) eigenvalue analysis method of Bentler and Yuan (1996). The
middle range of threshold values 0.398<[ , , <0.839 may agree best with a visual

inspection of the scree plot.

4.2.3 Canonical variates

Canonical variates, like principa components, are a linear transformation of the
input matrix X . Whereas principal components are selected to maximize the variance of
the input data with respect to the components, canonical variates are selected to maximize

the correlation between the input data and the output classes. The input data are
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represented as rows of an input matrix X, and the output classes are represented as a

matrix of dummy zero-one class indicator variables W, where

1 if theith exemplar O classj
’ :{ P ‘ (4.6)

0 otherwise

(Mardia, Kent et a. 1979).
Canonical variates can be obtained by performing a canonical correlation analysis
on the input matrix X and the class indicator matrix W given in (4.6). The first

canonical correlation vectors a, and b, maximize the correlation between Xa, and
Whb, . Subsequent canonical correlation vectors are chosen to maximize the correlation
between Xa, and Wb, subject to the condition that Xa, is uncorrelated with the
previous canonical correlation variables Xa, .. Xa, , (Mardia, Kent et al. 1979). Let
A=[a, a, - ay]. (4.7)

Then the column vectors of XA are the canonical variates.
Because of the relationship between canonical variates and linear discriminant
analysis (discussed further in Section 4.3.1), it is standard to scale the canonical

correlation vectors a, such that each canonical variate Xa, has unit within-class
variance (Ripley 1996).

4.2.4 Extended canonical variates
A key limitation of canonical variates as inputs to an orthonormal basis function
neural network is that the number of canonical variates is limited to C -1, where C is

the number of classes in the dataset. In some cases, it is advantageous to present inputs
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that have higher dimensionality than canonical variate analysis can provide. This may be
the case when the number of classesis small relative to the number of input dimensions.

Extended canonical variates are the set of canonical variates augmented by the
principal components of the orthogonal complement of the canonical vectors. These
principal components represent the directions in which the data vary the most, yet the
weighted means of the classes are equal. Although these components are not useful for
linear classification in the original problem space, they can potentially improve the ability
of other methods, including orthonormal basis function networks, to distinguish between
classes.

Extended canonical variates are not invariant with respect to the scale of the
unrotated data, although the first C—-1 components are. The remaining components,
derived using PCA, will vary if the dataset is rescaled prior to computing the extended
canonical variates. Unless the relationship between the scales of dimensions in the
original datais known and meaningful, it is appropriate to scale the original data to have

mean =0 and standard deviation o =1.

4.2.4.1 Obtaining extended canonical variates
Let A be the matrix of canonical variate projection column vectors. The

extended canonical variates are the canonical variates XA augmented by the principal
components of the canonical variate transform residual matrix XA" , where the vectorsin
A" are orthonormal to preserve the scale of X .

The principal components of XA"~ may be obtained by direct computation of A" .

It is equivalent to find the principal components of
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X' =X(I-AA"), (4.8)

where A” =(ATA)_1 A" is the standard Moore-Penrose matrix pseudoinverse , since

I-AA" spansthe null spaceof A.

The number of extended canonical variatesisidentical to the rank of X. If fewer
variates than this number are desired, those with the smallest PCA coefficients are
discarded.

For the remainder of this dissertation, CVAQ, where g is given as an integer value,

will denote the first q extended canonical variates of X:
. . I
CVAQ=X, =[XA XV][J] (4.9

where I, is the gxq identity matrix. CVAqg contains the first g columns of

X =[XA XYV].

4.3 Postprocessing to improve multiclass models

Any classification algorithm that assigns class scores based on a vector of input
variables can be formulated as a regression technique if the class scores are taken to be
the result of regressing class indicator variables on the input data. Hastie, Tibshirani et
a. (1994) show that the problem of optimal scoring, selecting the linear transformation of
class scores that minimizes the least squares error from the correct classification, is
equivalent to performing linear discriminant analysis (LDA) on the class scores.

Hastie et a. make an argument for implementing optimal scoring for

classification problems involving three or more classes whenever an algorithm is capable



68

of providing class scores. They show that other methods that can yield similar
discrimination boundaries for two-class problems, such as Softmax on linear regression

models (Bridle 1990), fail to find optimal linear decision boundaries for multiclass data.

4.3.1 Linear Discriminant Analysis (LDA)
Let XA be the canonical variates of the input matrix X, where A is the linear

transformation matrix of (4.7) in which each Xa_ has unit variance.

In this canonical variate space, Mahaanobis distance is identical to Euclidean
distance to the class means (Ripley 1996). If the class prior probabilities are equal, linear
discriminant analysis (LDA) assigns to a vector x; the estimated class y. whose linearly

transformed class mean pI,A isnearest x! A. If the class prior probabilities 7T, are not

equal, the linear discriminant applies a correction factor adding -2log 7z, to the distances

to the class means.

This method of determining the linear discriminant shows the connection between
LDA and canonical variates analysis (CVA), which in turn can be thought to be an
application of canonical correlation analysis (CCA). The LDA mode that this finds is
the standard LDA model consisting of a multivariate Gaussian for each class with a
single covariance matrix common to each Gaussian. The Gaussians differ in their means

and amplitudes.

4.3.2 Optimal scoring for an orthonormal basis function model with fixed coefficients
Once the coefficients of an orthonormal basis function network are fixed, it may

be possible to improve the decision boundaries by optimal scoring (Hastie, Tibshirani et
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al. 1994). Let g, be afunction that assigns scores to the class labels, and consider the
model

8.(2) ~x'B,, (4.10)
where the class label z is transformed by the optimal scoring function &, and the
variates x are multiplied by the weight vector (3, to minimize the average squared

residual (ASR). Hastie, Tibshirani et al. givethisas:

AR=1YY (0,(2) B, (411)

k=1 i=1
Mardia, Kent et al. (1979) show the equivalence between this optimal scoring problem
and linear discriminant analysis (LDA) (Section 4.3.1).
Flexible discriminant analysis (Hastie, Tibshirani et al. 1994) makes it easy to

extend the model of (4.10) and (4.11) to a partial basis expansion ¢(x;):

6.(2) ~ 6 (x)"B, (4.12)

AR = %ii(@(a) ~0(x)B,)’ (4.13)

k=1 i=1
Minimizing the average squared residual in this case requires a full multivariate

regression on the expanded basis terms ¢(x;). Depending on the number of terms under

consideration, this can be computationally intensive.
Instead of performing a full regression on the expanded basis terms, it is possible
to estimate the coefficients of these terms using Devroye's discriminant estimator or an

equivalent class density estimator and fix the coefficients. Let
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a, da, a,c
a a a

] 2¢ (4.14)
aM,l aM,Z aM,C

be the matrix of coefficients for Devroye's discriminant estimator. If A is fixed, the
model of (4.12) can be modified to require a regression only on the outputs of the

orthonormal basis function classifier developed in the previous chapter:

8.(2) ~[ATd(x)]"B, , or equivalently

AT (4.15)
6.(2) ~y B,
This model has average squared residual:
1w ~ TR 2
AQZNZZ(QK(ZJ_% By) (4.16)
k=1 i=1

This clearly can be minimized in exactly the same way as (4.11), substituting y," for x! .

The results of Mardia, Kent et al. and Hastie, Tibshirani et al. therefore show that this
particular optimal scoring problem is solved by performing a procedure equivalent to

LDA on the estimated classindicators y, and the associated actual classindicators y, .

In fact, it is clear that y, may aways be substituted for x, in this manner

whenever a classification algorithm estimates a class indicator vector. Performing LDA
on the estimated class indicator vectors minimizes the average squared residual subject to
the constraint that the coefficients of the underlying model are fixed by some alternate
methodology. Note that in most cases it would be possible to achieve a lower average

squared residual without this constraint by performing a full regression to find the
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coefficients of the underlying model, but the computational expense of doing so might be

prohibitive if the number of terms under consideration islarge.

4.4 ANOVA models of preprocessing and postprocessing performance

The method used for preprocessing, the dimensionality of the preprocessed data,
and the method used for postprocessing al potentialy impact the performance of an
orthonormal basis function network. The combination of methods to use for
benchmarking was selected by estimating the effect that each choice had on the

classification error rate.

4.4.1 Procedure

Analysis of Variance (ANOVA) (Winer, Brown et al. 1991) is a standard
statistical tool for linear modeling of the effects of known factors in an experimental
setting. In this experiment, the classification error rate of an orthonormal basis function
network was modeled as a linear function of four factors and their interactions. ANOVA
attributes a portion of the total variance in the performance to each variable and
interaction term, with the remainder accounted for asresidual.

The factors under consideration included the preprocessing method, preprocessing
dimensionality, postprocessing method, and basis used. The levels of these factors are
summarized in Table 4.1. These experiments were constructed using a four-way full
factorial design, meaning that every possible combination of factor levels was
represented. ANOVA models based on this design were used to evauate the

performance of orthonormal basis function networks on benchmarks from the DELVE
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suite (Rasmussen, Neal et al. 1996; Hettich, Blake et a. 1998) under the variety of

conditions represented by the factors.

Factor Levels

Preprocessing method CVA, PCA

Preprocessing 56,7,8,9, 10,11, 12, 13, 14, 15, 16

dimensionality

Postprocessing method LDA, Maximum (no postprocessing)

Basis Cosine (discrete cosine basis with zero-crossing cutoff
criterion),

Daubechies (second-order Daubechies wavelets with
scale product cutoff criterion),

Legendre (polynomial basis with polynomial-order
cutoff criterion)

Table 4.1: Factors and treatment levels for four-way ANOVA modeling of
orthonormal basis function neural network performance on DELVE development
benchmarks. In the Maximum treatment level, the class selected is that with the
maximum value of the corresponding one-vs.-many discriminant at a particular x,.
The ad hoc selection of cutoffs reflects that exploratory data analysis on these
databases did not yield significant differences between cutoffs (hyperbolic, linear, and
spherical) within each basis, likely because the data were inadequate for this purpose.
Therefore, a single representative cutoff was selected for each basis. It is possible that
the cutoff selected could be a significant factor in classification performance on other

databases. The hyperbolic cutoff, which uses the ZC order of tensor product basis

functions, was selected for the cosine and Daubechies bases. The linear cutoff, which
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corresponds to multivariate polynomial order, was selected for the Legendre basis. It
should be noted that results in this chapter and following chapters showing comparative
performance of bases are in fact comparing these particular ad hoc combinations of basis
and cutoff, as summarized in Table 4.1.

The DELVE benchmark databases consist of between four and eight digoint
training sets. These were considered to be replicates for the sake of this analysis.
Although the training sets are digjoint, they do not meet the independence requirement for
ANOVA analysis since the same training sets are used for each and every combination of
factor levels. This approach is thus deficient because the replicates are correlated across
al treatments. While a repeated-measures ANOV A anaysis might be more appropriate
for these data, the results are very similar to those using standard ANOVA. Repeated-
measures ANOVA is moreover known to be sensitive to violations of its assumption of

sphericity (Keppel 1991; Winer, Brown et a. 1991), while standard ANOVA isrelatively

robust. Sphericity is the property that the group covariance matrix
s s Sy
2
r= ,%1 SZ , ,SZN has when s +s{ —2s, , the variance in the difference between

2

Svi S S

the groups, isidentical for all group pairings { j, k| j # k}.

4.4.2 Results
4.4.2.1 Letter recognition database
The letter recognition task is classification of a sixteen-dimensional vector of

letter attributes as one of twenty-six capital letters. Frey and Slate (1991) generated this
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database by distorting twenty fonts and taking various metrics. DELVE splits the
database into six digoint training sets and six digoint test sets. It is meant to be run three
times, with each run doubling the number of training exemplars available. In the first
run, there are 390 training exemplars per replicate; in the second, 780 exemplars; and in
the third, 1,560 exemplars. Figure 4.3, Figure 4.4, and Figure 4.5 show the ANOVA
models resulting from these three runs. The Shapiro-Wilk test as implemented by the R
Development Core Team (2003), a standard normality test that has been extended to be
applicable to awide range of sample sizes, was used to inspect the residuals. With 780 or
1,560 exemplars per replicate, the four-way ANOVA models without interaction have
residuals statistically indistinguishable from the normal distribution. The best models
including interaction terms for all three runs have this same property. ANOVA therefore
appears to be appropriate for characterizing these data. The ANOV A models show that

each of the four factors under consideration is statistically significant at p =.05.

CVA preprocessing results in a lower mean classification error rate than does
PCA on the letter recognition database. It is also clear that the number of dimensions is
significant. However, on the 390-exemplar run, there was no significant difference
between the best observed performance (for twelve dimensions) and anything else in the
range of ten to sixteen dimensions. On the 780-exemplar and 1,560-exemplar runs, there
was no significant difference between the best observed performance (for sixteen and
fifteen dimensions, respectively) and anything else in the range of twelve to sixteen
dimensions. These data are insufficient to determine whether any reduction in

dimensionality is beneficial for application of orthonormal series classifiers to the letter



75

recognition benchmark. It is clear that reducing the dimensionality to nine or less is
detrimental in this case.

For postprocessing, LDA consistently results in better performance than simply
taking the class with the highest score.

The basis used (in combination with the ad hoc selected cutoff) also proved to be
a significant factor. For the letter recognition problem, the cosine basis resulted in the

lowest mean error rate, followed closely by the Legendre basis.



76

Preprocessing strategy (16.3% of total variance) Postprocessing strategy (16.8% of total variance)
CVA} © 1 LDA ©
PCA} {  Maximum
0.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55
Mean classification error rate Mean classification error rate
Preprocessing order (14% of total variance) Basis used (40.3% of total variance)
or - Cosine e
6r N -
T
8r Do
9t Lo
107 - - Daubechies
11 -
121 ==
131 -
141 —O
15} o Legendre
16} o7 =
0.4 0.45 0.5 0.55 0.6 0.65 0.4 0.45 0.5 0.55 0.6 0.65
Mean classification error rate Mean classification error rate

Figure 4.3: Multiple comparison of four-way ANOVA model factors for the
DELVE letter recognition task with 390 training exemplars. The classification error

rate has global mean y=0.476, standard deviation o =0.100, and gz0.209.

U
Residuals account for 12.6% of the total variance.
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Preprocessing strategy (15.9% of total variance) Postprocessing strategy (12.6% of total variance)
CVAf © 1 LDA ©
PcAl {  Maximum
0.38 0.4 0.42 044 046 048 0.38 0.4 0.42 044 046 048
Mean classification error rate Mean classification error rate
Preprocessing order (22.6% of total variance) Basis used (37.9% of total variance)
or Cosine e
6r o
7 .
8 L
9t o 1
107 S 1 Daubechies
11} S 1
121 o
131 -
14+ -
15} o Legendre
161 o~ s
0.35 0.4 0.45 0.5 0.55 0.35 0.4 0.45 0.5 0.55
Mean classification error rate Mean classification error rate

Figure 4.4: Multiple comparison of four-way ANOVA model factors for the
DELVE letter recognition task with 780 training exemplars. The classification error

rate has global mean (=0.429, standard deviation ¢ =0.093, and Ez0.217.
Y7,

Residuals account for 11.1% of the total variance.
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Preprocessing strategy (15.3% of total variance) Postprocessing strategy (11.6% of total variance)
CVAte 1 LDA} ©
PCA} - {  Maximum
0.36 0.38 0.4 0.42 044 046 0.36 0.38 0.4 0.42 044 046
Mean classification error rate Mean classification error rate
Preprocessing order (26.4% of total variance) Basis used (36.5% of total variance)
of Cosine )
6 i
7 L
8 [
9 :
101 - 1 Daubechies
11 1
12 ©
13-
14~
15 o= Legendre
16 - s
0.35 0.4 0.45 0.5 0.55 0.3 0.35 0.4 0.45 0.5
Mean classification error rate Mean classification error rate

Figure 4.5: Multiple comparison of four-way ANOVA model factors for the
DELVE Iletter recognition task with 1,560 training exemplars. The classification

error rate has global mean f=0.397, standard deviation 0 =0.085, and g 0.215.
U

Residuals account for 10.3% of the total variance.

4.4.2.2 Image segmentation database

The image segmentation task is classification of a sixteen-dimensional vector of
attributes as one of seven classes: brickface, sky, foliage, cement, window, path, or grass.
The attributes are various measures taken from a 9-pixel region of a color image. The

database was created by the University of Massachusetts Vision Group. DELVE splits
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the database into eight digoint training sets and a common test set of 1,190 exemplars.
This database is meant to be run three times, with each run doubling the number of
training exemplars available. In the first run, there are 70 training exemplars in eight
replicates; in the second, 140 exemplars in eight replicates;, and in the third, 280
exemplarsin four replicates.

Figure 4.6, Figure 4.7, and Figure 4.8 show the ANOVA models resulting from
these three runs. The residuals of these models are quite high, so much of the variancein
performance is not explained. A Shapiro-Wilk test of the residuals rejects the hypothesis

of normality for ANOV A models with or without interaction effects, indicating that they
may not be appropriate for the data corresponding to 70 training exemplars (p <107") or
280 training exemplars ( p < 2x107°).

From the 140-exemplar run (Figure 4.7), it is possible to conclude that the
preprocessing method and dimensionality both have a significant effect on performance.
Aswith the letter recognition database, CVA resultsin alower mean error rate than PCA.
The best error rate, achieved with thirteen dimensions, is statistically indistinguishable
from anything between ten and sixteen dimensions, inclusive. It is not possible to
conclude whether areduction in dimensionality could be beneficial.

The image segmentation database is inconclusive about postprocessing methods.
The differences observed were not significant except in the 70-exemplar model, the

validity of which is questionable.
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The cosine and Legendre bases showed an advantage over the Daubechies basis
on the 140-exemplar data, but they showed no significant advantage over each other.

These observations are contradicted by the 70-exemplar model.
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Preprocessing strategy (12.7% of total variance) Postprocessing strategy (5.4% of total variance)
CVA} & 1 LDA}| —o—
pcal { Maximum}
0.28 0.3 0.32 0.34 036 0.38 0.3 0.31 0.32 0.33 0.34 0.35
Mean classification error rate Mean classification error rate
Preprocessing order (15.4% of total variance) Basis used (0.9% of total variance)
g I Cosine —e—
U | |
8t : :
9r L —e—
10t Lo Daubechies
11} —0—
121 —o—
13t —o—
14+t ——
15} o Legendre
16} —6— : :
0.25 0.3 0.35 0.4 0.45 0.3 0.31 0.32 0.33 0.34
Mean classification error rate Mean classification error rate

Figure 4.6: Multiple comparison of four-way ANOVA model factors for the
DELVE image segmentation task with 70 training exemplars. The classification

error rate has global mean 4 =0.321, standard deviation o =0.071, and g - 0.221.
U

Residuals account for 65.6% of the total variance.



Preprocessing strategy (7.5% of total variance)

CVA} -0

PCA}

0.3 0.35
Mean classification error rate

Preprocessing order (14.8% of total variance)

5_

6_

7_

8_

9t : :
10t —o—
11} - ——
12+ o
13t ——
14+t —
15} L —e—
16 - —o—
0.25 0.3 0.35 0.4

Mean classification error rate

Figure 4.7:
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Postprocessing strategy (0.2% of total variance)

LDA} —o——

Maximum —e—
0.34 0.35 0.36
Mean classification error rate

Basis used (3.6% of total variance)
Cosine —e—
Daubechies
Legendre —e—
0.32 0.34 0.36 0.38

Mean classification error rate

Multiple comparison of four-way ANOVA model factors for the

DELVE image segmentation task with 140 training exemplars. The classification

error rate has global mean f =0.345, standard deviation o =0.080, and 9 - 0.232.

Residuals account for 73.9% of the total variance.

U
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Preprocessing strategy (6.7% of total variance) Postprocessing strategy (0.1% of total variance)
CVA} —o— 1 LDA —e——
pcal = { Maximum —
0.3 0.35 0.4 0.32 0.33 0.34 0.35
Mean classification error rate Mean classification error rate
Preprocessing order (13.3% of total variance) Basis used (8% of total variance)
g I Cosine —e—
ol f ; .
8} —o—
9r : —— 1
10t : —— 1 Daubechies
117 —a— 1
121 N
13t —— : :
14r —— : :
151 —e— Legendref —O—
16+ —— : :
0.25 0.3 0.35 0.4 0.45 0.3 0.35 0.4
Mean classification error rate Mean classification error rate

Figure 4.8: Multiple comparison of four-way ANOVA model factors for the
DELVE image segmentation task with 280 training exemplars. The classification

error rate has global mean y =0.338, standard deviation g =0.087, and g - 0.258.
U

Residuals account for 71.8% of the total variance.

4.4.3 Conclusions

This study indicates that it may be advantageous to use CVA, rather than PCA, as
the preprocessing component of an orthonormal basis function classification system.
Such a limited selection of databases does not give a good estimate of the number

dimensions of preprocessed data to keep. In these particular databases, there was no
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significant disadvantage to utilizing all of the dimensions available from preprocessing
with CVA or PCA.

LDA postprocessing for optimal scoring resulted in a significant reduction in the
error rate for the letter recognition task. At worst, LDA postprocessing with adequate
data should result in approximately the same error rate as a winner-takes-all scoring
system. Since thereis little cost or risk to using LDA as a postprocessing method, it is
probably advantageous to do so as a matter of course for multiclass problems.

It is clear from this analysis that the choice of basis for an orthonormal basis
function classifier can have a significant effect on the results. For the data under
consideration, the Daubechies basis was consistently outperformed by the other two
bases. However, it is possible to construct data for which the Daubechies basis is
optimal. The best basisfor a particular problem is a characteristic of that problem, soitis
difficult to generalize this result.

The following chapter of this dissertation will reflect these empirical results
unless otherwise noted, although for some problems, these may not be the best choices.
All preprocessing will be done with CVA, and the maximum number of dimensions will
be retained when feasible. LDA will be applied uniformly to discriminant estimates for
multiclass problems. These options define a reference system for a particular basis. The
only factor that will be varied among orthonormal basis function networks is the basis
itself. There are inadequate data to probe the cutoff method, and as a matter of

convenience, it is not varied. Each basis uses the cutoff assigned ad hoc in Table 4.1.



Chapter 5

A Comparative Study of Classification Performance

5.1 Introduction

This chapter is an in-depth analysis of DELVE benchmarking results for a variety
of classification methods including linear models (LDA), K-nearest neighbors (KNN),
classification trees (CART), neural networks using backpropagation of error (backprop),
and support vector machine kernel methods (SVM) as well as orthonormal basis function
neural networks. DELVE (Rasmussen, Neal et a. 1996) compares such classifiers using

statistically valid methodol ogies applied to established databases.

5.1.1 Orthonormal basis function neural networks

This section summarizes the specific steps involved in orthonormal basis
function classification. Flowcharts of the orthonormal basis function neural network
training and testing procedures described here are shown in Figure 5.1 and Figure 5.2.

The data are prepared by computing all extended canonical variates. For some
databases this may yield too many variates, for instance more than twenty. In that case
an automated scree test may be applied to the extended variates (those obtained through
PCA of theresidual) for dimension reduction.

An initial set of orthonormal basis functions is selected by using the ordering
criteriain Section 3.6 to determine the first N basis function, where N is the number of

training data points.
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For each class, the corresponding coefficients of the orthonormal series expansion
of Devroye's discriminant function (3.25) are estimated (3.29), as are the associated
variance (3.35) and squared bias terms (3.41).

The orthonormal series is truncated to minimize its mean integrated squared error
(MISE) as in Equation (3.50), and individual terms that increase the expected MISE of
the model are also eliminated (3.52).

For multiclass problems, LDA is employed to determine decision boundaries

between the estimated discriminant functions for the various classes (Section 4.3).
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Compute all extended canonical variates (Sections
4.2.3and 4.2.4)

Apply automatic scree test to
extended variates for dimension
reduction (Section 4.2.2)

More than
20 variates?

Select initial set of N orthonormal basis functions,
where N is the number of training data points
(Sections 3.4-3.6)

A

A 4
Estimate coefficients of Devroye's discriminant
function for each class (one-class-versus-many)
(Section 3.7.2)

A 4

Truncate series to minimize estimated M1SE
(Section 3.7.9)

A 4

Eliminate individual terms that increase the
expected MISE (Section 3.7.10)

Apply LDA to determine decision
boundaries between estimated class
discriminants (Section 4.3)

Finish: modél istrai ned>47

Figure 5.1: Flowchart of orthonormal basis function network training procedure.

More than
two classes?
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=

v

For the testing data, compute the variates selected
during training

A 4

Estimate Devroye' s discriminant function for each
class (1-vs.-many) using the model terms
remaining after training truncation (Section 3.7.2)

More than YES
two classes?

NO

Compare Devroye' s discriminant function
estimates for the two classes directly

A 4

Select aclassusing LDA to determine
decision boundaries between estimated
discriminants (Section 4.3)

»C:i nish: model istested}

Figure 5.2: Flowchart of orthonormal basis function network testing procedure.

5.1.2 Backpropagation neural networks
Multilayer perceptron networks using backpropagation of error (backprop) for

training are a system initially developed by Werbos (1974) and implemented in this
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dissertation with the Netlab toolbox (Nabney and Bishop 2001). A three-layer perceptron
utilizes hyperbolic tangent hidden layer nodes and linear output layer nodes. The number
of output layer nodesis equal to the number of classes for a particular classification task.
The number of hidden layer nodes J, is determined by a divide-and-conquer
search to minimize the generalized cross-validation (GCV) criterion. For each potential

value j of J,, abackprop network containing j hidden layer nodes is trained for 1,000
iterations on the training data set. J,, is selected among these candidates to minimize the

GCV (Craven and Wahba 1979; Friedman 1991; Stone, Hansen et a. 1997):

_ MSE,

J, magmin————, (5.1)
j { a(J—l)}
1_
N
where MSE; isthe mean squared error

MSE, == D F(x) -y’ 52)
g T |

of the backprop network over the training set {x,} with corresponding output class
indicator function values {y,}. a=2.5 isatypical value for the GCV hyperparameter

(Stone, Hansen et a. 1997) and is used for model selection for this backprop
implementation.

The selected backprop network with J, hidden layer nodes is trained to a total of

5,000 iterations before being applied to the DELVE test data.
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5.1.3 Classification and regression trees (CART)

Classification and Regression Trees (CART) are a family of decision tree
methods developed by Breiman, Friedman et al. (1984). A tree is constructed by
progressively splitting the data into digoint clusters by minimizing a split criterion at
each step. The CART method used in this comparative study uses one-dimensional

splitting to minimize the tree’ s total Gini impurity, defined at each node as:
. C -
|(N):1—Z(P(y=c|x DN)), (5.3)
c=1

where P(y=c|xON) is the proportion of (x,y) pairs a node N that are associated

with class ¢ (Duda, Hart et al. 2000).

The full classification tree is computed for each of ten leave-out-ten-percent
cross-validation samples to estimate the optimal pruning level. The final model is
obtained by applying this pruning level to a full classification tree computed using al of
data points.

In this comparative analysis, dimension reduction was not used prior to fitting the

classification trees.

5.1.4 K-nearest neighbors (KNN)

As reviewed by Agrawala (1977), the K-nearest neighbors (KNN) method was
first described by Fix and Hodges (1951). It remains a popular method for pattern
classification due to its simplicity and statistical consistency. That many statistical

properties of KNN are known also makes KNN useful for benchmark comparisons.
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KNN requires that a distance metric d(x;,x,) be defined over the domain of x.

This is often taken to be the Euclidean distance metric. In KNN, the parameter k

determines the number of elementsin the set
- k *
agmin . .. led(x, X), (5.4)

where {x.x...x} are unique elements taken from the set {x,X,,...,x,} of known

exemplars. These k elements are the nearest in distance to the point of interest x, and

from the classes associated with these elements, it is possible to construct the class

probability estimator for class C at x. Let y be the class associated with x and let y

be the class associated with x . Then

By=C) =131y =) (5:5)
k <

(Bishop 1995).
In this comparative analysis, KNN models were applied without dimension
reduction to data normalized to have zero mean and unit variance in each dimension. The

optimal k was estimated by |eave-out-one cross-validation.

5.1.5 Linear discriminant analysis (LDA)

Linear discriminant analysis (Mardia, Kent et a. 1979; Ripley 1996), as described
in Section 4.3.1, was applied directly to the original variates of benchmark databases. In
some cases, data were linearly dependent, requiring dimension reduction to ensure that

input data had rank equal to its dimensionality.
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5.1.6 Support vector machines (SVM)

This work used the support vector machine toolbox created by Cawley (2000).
The toolbox employs Vapnik’s (1995) support vector machine for classification by means
of the sequential minimal optimization (SMO) agorithm established by Platt (1999). The
algorithm represented utilizes a Gaussian radial basis kernel. Multiple classification was
performed using the DAGSVM directed acyclic graph method (Platt, Cristianini et al.
2000). The DAGSVM method constructs a separate SVM classifier for each possible
class pairing. These binary classifiers are combined according to the connections in the
directed acyclic graph, which determines the order in which classes undergo elimination.

éa cross-validation (Joachims 2000) was used to select the kernel radius r and
regularization parameter C. These were determined by performing a simplex

minimization of the error estimate Err,, over the space of (r,C) for each binary

classifier inaDAGSVM system.

5.2 Methods and metrics

This section summarizes methodologies incorporated in the DELVE software
(Rasmussen, Neal et al. 1996), as described in detail in the DELVE Manual (Rasmussen,
Neal et al. 1996), along with related methodol ogies used in this dissertation to extend the
paired comparisons of agorithms in DELVE to multiple comparisons and their
interpretation. DELVE employs one of two types of ANOVA model depending on
whether digoint test datasets are specified to correspond to the training replicates (the

“hierarchical” model) or a single common test dataset is used for al training replicates.
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5.2.1 DELVE bivariate comparisons with digoint test data
When test datasets are digoint, DELVE represents a classifier’s loss on training set i and

test case j by the linear model

Y, SH+a +E, (5.6)
in which the variable a accounts for the variation in classification performance
measured across training sets i (Rasmussen, Neal et al. 1996). It isassumed for the sake
of ANOVA analysisthat a and ¢; are independent Gaussian random variables. The
same model can be used to represent the difference in performance between two different
classifiers when y; is instead taken to be the difference in classification performance.

For paired comparisons, the significance of this difference can be determined using a t-

test. Therelevant t statisticis

1 ; %
t=y|— ) (V¥ -V 5.7
y[l(l_l)E(y. y)J (5.7)
with | =1 degrees of freedom (Rasmussen, Neal et al. 1996).

5.2.2 DELVE bivariate comparisons with common test data

In some cases, insufficient data exist to support the use of digoint test datasets for
each replicate. In these cases, DELVE employs a single common test set . Under these
circumstances, it is necessary to model the effects of the test cases on the loss

(Rasmussen, Neal et al. 1996):

y; = +a +b, +g (5.8
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Asin (5.6), a accounts for training set variation. The variable b, accounts for

variation in loss due to test case j (Rasmussen, Neal et a. 1996). For paired tests, this
model can be used to represent the difference in performance between two classifiers

when y; is taken instead to be the difference in classification performance. Rasmussen,

Neal et a. employ a quasi-F test to test the hypothesis that the mean difference between
the performances of the classifiers is nonzero. If the p-value of this test is greater than

0.05, the difference is taken to be not significant.

5.2.3 Multiple comparisons using DELVE

The DELVE methodology allows bivariate comparisons between any two
algorithms.  However, it does not provide an explicit way to perform multiple
comparisons.

A conservative approach to multiple comparisons of n candidates utilizes the
Bonferroni correction,

, a
a'=———,
n(n-1)/2

(5.9
which constrains the experiment-wide probability of error in determining the direction of
performance differences to be less than or equal to a . Although thisis very conservative
in determining significance and direction of results comparisons, it assigns large
confidence intervals. These might lead one to believe that an individual algorithm could
potentially perform much better than it actualy does. Adjusting for multiple

comparisons in this way makes it very important not to draw conclusions from the lack of

significance.
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The staircase plots presented in this dissertation reflect pairwise differences between
algorithm performances. The Bonferroni correction was not used because it might mask

significant statistical differences between any two individual algorithms of interest.

5.2.4 Staircase plotting of multiple comparison data

Basford and Tukey (2000) introduced a new plot format that presents results and
their multiple comparisons in a single display. The staircase plot organizes multiple
comparison data so they may be readily interpreted. Significant differences are
represented by the relative positions of results on this plot. A result that is on a higher
tier and to the right of a given result is significantly different unless otherwise indicated.
A result that is on a lower tier and to the left is likewise significantly different.
Comparisons must take both the tier and horizontal position into account. A result on the
same tier is never significantly different; nor is a result to the right on a lower tier or to
the left on a higher tier.

A disadvantage of the staircase plot isthat it requires that the order of presentation
of results be flexible. However, the amount of information that can be presented in this

manner would otherwise require multiple displays, one to show the results with error

(n)(n-1)

estimates and another to represent al of the s bivariate comparisons between n

results. By using horizontal position for information display, the staircase plot
successfully consolidates results and their bivariate comparisons. For this reason,

staircase plots are used throughout this chapter.
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5.3 DELVE letter recognition benchmark

The letter recognition database (Frey and Slate 1991; Rasmussen, Neal et al.
1996; Hettich, Blake et al. 1998) contains 20,000 cases, each consisting of sixteen input
characteristics and an associated output class, one of twenty-six uppercase letters.
DELVE segments the database into six test sets of 1,773 cases each and six digoint
training sets with 390, 780, or 1,560 exemplars each.

When trained on only 390 exemplars (Figure 5.3), six algorithms performed
amost uniformly well, with between 64% and 68% correct classification rates. These
included the cosine and Legendre orthonormal basis function networks, backprop, KNN,
LDA, and SVYM. Among these systems in the top group, only two significant differences
were observed at @ =.05. The cosine system had a significantly better classification rate
(66.1%) than the Legendre (64.3%), and the SVM performance (67.3%) was significantly
higher than that of KNN (64.4%). Three systems failed to make the top group.
Significantly lower performance was observed using the Daubechies (54.8%), CART
(52.3%), and Haar (20.9%) classifiers.

With 780 exemplars for training, the best-performing group of algorithms,
between 73% and 78% correct classification rates, consisted of backprop, KNN, and
SVM. Within this group, SVM performed significantly better than KNN. Next in order
of classification rate was the cosine basis function network (70.1%). This outperformed a
third group consisting of the Legendre basis function network and LDA. Apart from the
Haar classifier, the Daubechies and CART systems were least suited to the 780-exemplar

letter classification task.
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When trained with 1,560 exemplars, a similar ordering was observed, with greater
differentiation between the algorithms. Only backprop (86.7%) and SVM (85.7%) had
classification rates in atop grouping. In order, they were followed by the KNN, cosine,
and Legendre systems. A lower group consisted of the Daubechies, CART, and LDA
classifiers. Within this group, LDA had a significantly higher correct classification rate
than did the Daubechies classifier. Only the Haar classifier performed beneath this lower
group.

On al of these tasks, orthonorma basis function neural networks employing
cosine and Legendre bases were competitive with popular standard classifiers, equalling
or exceeding the classification performance of LDA. They were most competitive when
only 390 training exemplars were available. On this task, their performance was
statistically indistinguishable from backprop, KNN, LDA, and SVM. Of the six top-
grouped systems on the 390-exemplar task, it appears that backprop, KNN, and SVM
benefitted most from the availability of additional training data, while LDA benefitted the

least.
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Figure 5.3: Staircase plot of DELVE benchmark performance for the letter
recognition task with 390 training exemplars. Performance tiers are separated by
dashed lines. Algorithms that are to the right and in a higher tier with respect to a
selected algorithm have significantly better classification performance. On this task,
six algorithms had equivalent performance in the top tier, and all but one of these
did significantly better than the two second-tier systems.
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Figure 5.4: Staircase plot of DELVE benchmark performance for the letter
recognition task with 780 training exemplars. Performance tiers are separated by
dashed lines. Algorithms that are to the right and in a higher tier with respect to a
selected algorithm have significantly better classification performance.
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Staircase plot of DELVE benchmark performance for the letter

recognition task with 1,560 training exemplars. Performance tiers are separated by
dashed lines. Algorithms that are to the right and in a higher tier with respect to a
selected algorithm have significantly better classification performance.
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Figure 5.6: Mean CPU time required to train four orthonormal basis function
networks (left) and five other classifiers (right) on the DELVE letter recognition
database. CPU times are shown on a logarithmic scale. Values less than 1 ms are
rounded up to 1 ms.
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Figure 5.7: Mean CPU time required to test four orthonormal basis function
networks (left) and five other classifiers (right) on 1,773 exemplars from the DELVE
letter recognition database. CPU times are shown on a logarithmic scale. Values
less than 1 ms are rounded up to 1 ms.

5.4 DELVE image segmentation benchmark

The University of Massachusetts Vision Group’s image segmentation database
(Rasmussen, Neal et al. 1996; Hettich, Blake et a. 1998) contains 2,310 cases, each
consisting of sixteen local image attributes and an associated output class, one of seven
textures. The DELVE specification for this database utilizes the data three times, with
the number of training exemplars doubling in each run. DELVE segments the database

into four or eight digoint training replicates, depending on the number of training
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exemplars (70, 140, or 280) used for agiven run. A common test set of 1,290 casesis set
aside.

Regardless of the number of training exemplars provided, top performing systems
included cosine, Daubechies and Legendre orthonormal basis function networks and
LDA. Only these agorithms were in the top group when trained on 70 exemplars, al
falling between 72% and 75% correct classification. The performance of CART (67.7%)
was not significantly worse than the LDA system on this task, nor was it significantly
better than backprop or KNN, or SVM. These three agorithms and CART formed a
second group for which the classification rates, between 63% and 68%, were not
significantly different. The Haar orthonormal basis function network did significantly
worse than any other system benchmarked on the image segmentation database
regardless of the number of training exemplars provided.

When 140 training exemplars were provided, the top performing group of
algorithms became more inclusive. In addition to the cosine, Daubechies and Legendre
orthonormal basis function networks and LDA, top performers included CART and

KNN. Among these algorithms, the only significant difference observed at p=.05 was

between the cosine network (69.6% correct) and KNN (65.6% correct). All of these
algorithms but CART and KNN performed significantly better than backprop (60.4%
correct). All of the top group algorithms but CART performed significantly better than
SVM (61.8% correct), which with backprop formed a second performance grouping.
With only four replicates, the 280-exemplar benchmark had few significant

differences. There were no significant differences between the classification rates of the
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cosine, Daubechies, and Legendre orthonormal basis function networks, CART, KNN,
LDA, and SVM. Backprop had significantly lower classification performance than the

Daubechies, Legendre (72.3% correct), and CART classifiers.
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Figure 5.8: Staircase plot of DELVE benchmark performance for the image
segmentation task with 70 training exemplars. Performance tiers are separated by
dashed lines. Algorithms that are to the right and in a higher tier with respect to a
selected algorithm have significantly better classification performance.
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Figure 5.9: Staircase plot of DELVE benchmark performance for the image
segmentation task with 140 training exemplars. Performance tiers are separated by
dashed lines. Algorithms that are to the right and in a higher tier with respect to a
selected algorithm have significantly better classification performance.
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Figure 5.10: Staircase plot of DELVE benchmark performance for the image
segmentation task with 280 training exemplars. Performance tiers are separated by
dashed lines. Algorithms that are to the right and in a higher tier with respect to a
selected algorithm have significantly better classification performance.
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Figure 5.11: Mean CPU time required to train four orthonormal basis function
networks (left) and five other classifiers (right) on the DELVE image segmentation
database. CPU times are shown on a logarithmic scale. Values less than 1 ms are
rounded up to 1 ms.
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Figure 5.12: Mean CPU time required to test four orthonormal basis function
networks (left) and five other classifiers (right) on 1,190 exemplars from the DELVE
image segmentation database. CPU times are shown on a logarithmic scale. Values
less than 1 ms are rounded up to 1 ms.

5.5 DELVE Titanic survival prediction benchmark

The Titanic database (Rasmussen, Neal et al. 1996) contains 2,201 exemplars.
Each represents a passenger on the Titanic. The task is to classify an individual as a
survivor or victim based on three variables. class of passage, sex, and whether a child or
an adult. DELVE utilizes the training data to form sets of eight replicates with 20, 40,

80, and 160 exemplars.
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Provided with 20 training exemplars, all algorithms tested, with the exception of
SVM and CART, had equivaent classification performance. SVM performed
significantly worse than all other algorithms, achieving 64.8% correct while other
systems all achieved at least 69.3% correct. This value corresponded to the performance
of the CART classifier, which was significantly worse than that of both LDA (72.5%)
and backprop (72.3%). The remaining agorithms (all orthonormal basis function
classifiers and KNN) had performance that was not significantly worse than backprop or
LDA, nor significantly better than CART.

With 40 training exemplars, there were two tiers of classifiers based on
performance. No significant difference was observed between LDA (74.7% correct),
backprop, CART, and the Legendre-based classifier. All other agorithms could be ruled
out from having the best performance on this task, and these formed a second tier. The
following significant differences were observed between systems in the first tier and
second tier: LDA had a significantly higher correct classification rate than all systemsin
the second tier, backprop performed better than all systems in the second tier except
KNN, and CART outperformed the SVM classifier. The Legendre-based system could
not be differentiated statistically from any other system.

With 80 training exemplars, first-tier systems included backprop (76.5% correct),
LDA, KNN, and CART. The second tier contained the Legendre, cosine, and Haar
orthonormal basis function classifiers. Backprop performed significantly better than all
second-tier systems, and the Daubechies classifier performed significantly worse than the

backprop, LDA, KNN, and Legendre classifiers. Other than these, the only distinction
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that could be made was between SVM and all other systems: SVM had a significantly
lower classification rate.

With 160 training exemplars, backprop (78.0% correct), CART, and LDA had top
classification scores. A second group with no significant differences within the group
consisted of KNN, the Legendre, cosine, and Haar basis function classifiers, and SVM.
Of these systems, al but KNN performed significantly worse than LDA. The
Daubechies orthonormal basis function classifier performed significantly worse than
backprop, CART, and KNN, but not LDA. No system could be distinguished statistically

from SVM due to high variance in the performance of SVM on this task.
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Figure 5.13: Staircase plot of DELVE benchmark performance for the Titanic
survival prediction task with 20 training exemplars. Performance tiers are
separated by dashed lines. Algorithms that are to the right and in a higher tier with
respect to a selected algorithm have significantly better classification performance.
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Figure 5.14: Staircase plot of DELVE benchmark performance for the Titanic
survival prediction task with 40 training exemplars. Performance tiers are
separated by dashed lines. Algorithms that are to the right and in a higher tier with
respect to a selected algorithm have significantly better classification performance.
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Figure 5.15: Staircase plot of DELVE benchmark performance for the Titanic
survival prediction task with 80 training exemplars. Performance tiers are
separated by dashed lines. Algorithms that are to the right and in a higher tier with
respect to a selected algorithm have significantly better classification performance.
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Figure 5.16: Staircase plot of DELVE benchmark performance for the Titanic
survival prediction task with 160 training exemplars. Performance tiers are
separated by dashed lines. Algorithms that are to the right and in a higher tier with
respect to a selected algorithm have significantly better classification performance.
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Figure 5.17: Mean CPU time required to train four orthonormal basis function
networks (left) and five other classifiers (right) on the DELVE Titanic survival
database. CPU times are shown on a logarithmic scale. Values less than 1 ms are
rounded up to 1 ms.
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Figure 5.18: Mean CPU time required to test four orthonormal basis function
networks (left) and five other classifiers (right) on 1,561 exemplars from the DELVE
Titanic survival database. CPU times are shown on a logarithmic scale. Values less
than 1 ms are rounded up to 1 ms.

5.6 DELVE Adult benchmark

The Adult database (Rasmussen, Neal et al. 1996) consists of six continuous
attributes and seven categorical attributes from the 1994 U.S. Census database.
Classifiers are to ascertain whether a particular exemplar (a census respondent) had a
salary of greater than $50,000.

Although there are only 13 attributes, using category indicator variables to

represent the categorical attributes requires a total of 62 dimensions. Extended canonical
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variates were computed for the full dimensionality of the datasets. The automatic scree
test method of Section 4.2.2 was used to reduce the dimensionality of the extended
variates acquired via PCA.

With 256 training exemplars, top-tier systems included KNN, CART, and LDA.
The second tier contained the Legendre, Haar, and cosine orthonormal basis function
classifiers. Of these, the Legendre system did not have significantly lower classification
performance than LDA, and was also the only system with significantly higher
performance than the third-tier Daubechies orthonormal basis function classifier. SVM,
also inthethird tier, did not perform significantly worse than the Daubechies classifier.

Backprop was significantly worse than all other systems on all the tasks for the
Adult benchmark. Regardless of the number of training exemplars, backprop with GCV
model selection performed worse than chance, which appears to be due to the use of a
generalized cross-validation criterion in place of actua cross-validation. This
generalized cross-validation criterion was minimized when the number of hidden layer
nodes was between 15 and 50. However, the performance of a simple linear discriminant
on this task indicates that one hidden layer unit should be sufficient to provide good
performance. The failure to find such a simple model is a shortcoming of the GCV
methodology used herein.

When provided with 512 training exemplars, CART and LDA had significantly
better classification performance than al other algorithms. KNN followed, with
performance significantly worse than each of these algorithms and significantly better

than all other classifiers. The cosine, Haar, and Legendre networks formed a tier of
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equivalent performance with no distinctions among the agorithms. This tier was
followed by the Daubechies, SVM, and backprop systems, respectively. Each had
significantly different performance.

CART was again the best performing agorithm when 1,024 exemplars were
provided. This was followed by LDA and KNN, each significantly different from all
other algorithms tested. The cosine, Haar, Legendre, and SVM classifier systems
followed. There were no significant differences between these systems. All the
aforementioned systems except SVM had significantly better classification rates than the
Daubechies orthonormal basis function system.

With 2,048 training exemplars, CART had a significantly higher classification
rate than any other algorithm. This was followed by LDA, which also performed
significantly better than the remaining algorithms, and KNN, which likewise was in a
performance tier of itsown. SVM and the cosine, Haar, and L egendre orthonormal basis
function networks formed a tier of equivalent performance. The Daubechies system had
significantly lower classification performance than al of these systems. Of the tested

systems, only backprop performed worse.
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Figure 5.19: Staircase plot of DELVE benchmark performance for the Adult task
with 256 training exemplars. Performance tiers are separated by dashed lines.
Algorithms that are to the right and in a higher tier with respect to a selected
algorithm have significantly better classification performance.
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Figure 5.20: Staircase plot of DELVE benchmark performance for the Adult task
with 512 training exemplars. Performance tiers are separated by dashed lines.
Algorithms that are to the right and in a higher tier with respect to a selected
algorithm have significantly better classification performance.
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Figure 5.21: Staircase plot of DELVE benchmark performance for the Adult task
with 1,024 training exemplars. Performance tiers are separated by dashed lines.
Algorithms that are to the right and in a higher tier with respect to a selected
algorithm have significantly better classification performance.
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Figure 5.22: Staircase plot of DELVE benchmark performance for the Adult task
with 2,048 training exemplars. Performance tiers are separated by dashed lines.
Algorithms that are to the right and in a higher tier with respect to a selected
algorithm have significantly better classification performance.
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Figure 5.23: Mean CPU time required to train four orthonormal basis function
networks (left) and five other classifiers (right) on the DELVE Adult database. CPU
times are shown on a logarithmic scale. Values less than 1 ms are rounded up to 1
ms.
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Figure 5.24: Mean CPU time required to test four orthonormal basis function
networks (left) and five other classifiers (right) on 3,706 exemplars from the DELVE
Adult database. CPU times are shown on a logarithmic scale. Values less than 1 ms
are rounded up to 1 ms.

5.7 Discussion

Of the orthonormal basis function networks tested, systems that use two of the
bases, Daubechies and Legendre, are able to exactly represent a linear classification
function and linear decision boundary. Using functions at the fundamental frequency, the
cosine basis can also represent monotonicaly increasing classification functions,
although the boundaries and representations are nonlinear. Of the bases tested, the Haar

basis is unique in its inability to represent any continuous monotonic function other than
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the trivial constant function. It appears from these results that this may be
disadvantageous for certain problems.

Besides classification performance, a salient difference between classifiersis the
amount of computation required for training (Figure 5.6, Figure 5.11, Figure 5.17, Figure
5.23). CART is consistently the fastest system to be trained on all the benchmark tasks
considered in this chapter, not requiring more than five milliseconds to fully fit a model.
LDA is aso extremely fast in this respect, with training times between 20 milliseconds
and two seconds. At the other extreme are backprop and SVM, the methods that perform
nonlinear optimizations. SVM scales poorly in the number of training exemplars,
requiring only seconds for the smallest databases considered and severa hours for the
largest. With the exception of the Adult database, for which backprop and SVM training
times are similarly long, backprop is consistently the most time-consuming classifier to
train. While not as fast as either CART or LDA, orthonormal basis function and KNN
classifiersrequire at most afew minutes for training on these databases.

Disparities in CPU time for testing (Figure 5.7, Figure 5.12, Figure 5.18, Figure
5.24) are not as extreme as for training. Where fast evaluation of test data is a concern,
LDA, which requires a simple linear computation, is an excellent choice, taking around
one microsecond of CPU time to classify a single exemplar, or only milliseconds to
classify an entire database. From the empirical results obtained here, backprop appears to
be the clear second choice for testing speed. KNN and SVM are consistently the two
slowest systems for testing, typically between one and three orders of magnitude slower

than backprop. Inthe worst case, however, both algorithms take just over a minute to test
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al exemplars. Other algorithms, including CART and al orthonormal basis function
classifiers, consistently test more rapidly than these systems but more slowly than

backprop.

5.8 Conclusions

These DELVE classification benchmark results illustrate the need to test a variety
of classification approaches on any particular dataset. It is difficult to ascertain a priori
which classifier will yield the best classification performance on a given task. All of the
classifiers tested had performance among the best results on one task or another in the
series of benchmarks.

The comparisons performed in this chapter confirm the suitability of orthonormal
basis function classifiers to multidimensional classification tasks of similar nature to
those in the DELVE benchmark suite. It appears from these limited tests that
orthonormal basis function neural network performance relative to other approaches may

be best when the number of exemplars available for training is smal.



Chapter 6
An Application of Orthonormal Basis Function Neural Networks to

Land Use Change Classification

6.1 Introduction

The results of the previous chapter suggest that orthonormal basis function
classifiers may be useful for processing remotely sensed data. This chapter revisits the
Nile River delta land use change database of Chapter 2 to evaluate the performance of
orthonormal basis function neural networks on the task. It is desirable to investigate a
variety of systems for such a problem since it is unknown a priori which systems will
perform well. This database differs from many remote sensing databases in that it
requires the identification of changes in land use over time from a sequence of satellite
images.

For remote sensing applications, there are several performance measures of
interest. The user’s accuracy assesses the classification rate on the subset of pixels or
sites for which class labels are known. The producer’s accuracy estimates the
classification rate on all pixels in a map. The training and testing speeds are aso
important for many remote sensing applications due to the volume of data to be

processed.
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6.2 Methods

6.2.1 Data

The dataset, consisting of ten satellite images, had been previously been
geometrically registered and radiometrically normalized (Lenney, Woodcock et al. 1996).
For each pixel of the registered image set, a multi-date vector was prepared. Data
consisted of six bands of 30m Landsat TM data from ten dates between 1984 and 1993,
of which one band for one date was missing. The line and sample (vertical and
horizontal) coordinates of each 30m pixel were also available. In addition, each pixel
was associated with a geographic region (delta, desert, coast, or wetlands). The
geographic region was represented by a 1-of-4 coding scheme, in which one of four
vector elements was set to a value of one and the remaining three elements were set to a
value of zero. The 59 bands of Landsat TM data, 2 coordinates, and 4 region indicator
variables were concatenated to form a 65-dimensional feature vector for every pixel in
the study area. Using extended canonical variate analysis (Section 4.2.4) on the labeled
pixels, the dimensionality of the feature vectors was reduced to ten, including seven
canonical variates and the three most prominent principal components of the residual
(Figure 6.1). These canonical variates accounted for 1.08% of the total variance in the
feature matrix X . Thefirst three principal components accounted for 87.24% of the total
variance in X. In all, the first ten extended canonical variates accounted for the full

linear classification model and 88.33% of the variance in the independent variables.



129

50 T T T T T T

40 -

30 n

25 b

PCA coefficient of variate

151 b

q=10

1 1 1 |
0 10 20 30 40 50 60 70
Extended canonical variate

Figure 6.1: Scree plot of the principal components of the land use change database
after removal of the canonical variates. The elbow at =10 (seven canonical

variates and three additional components) was selected by visual inspection.
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Vaues in these ten dimensions were normalized by linear transformation to bein

the range [0,1] for every pixel in the study area. This was necessary for the ARTMAP

and orthonormal basis function classifiers. CART and LDA classifiers are not sensitive
to rescaling, so both were unaffected by this transformation. The KNN algorithm used in
this work rescaes all variables to have zero mean and unit variance, and was likewise

unaffected by the normalization of variatesto the unit interval.

6.2.2 Site-based |eave-out-one cross-validation

The Egypt land use change ground truth dataset consists of 358 sites, each of
which contains four pixels. These pixels may be highly correlated within a site, so a
typical leave-out-one cross-validation methodology would result in the presentation
during training of pixels amost identical to the pixel left out.

To eliminate this anticipated source of bias, cross-validation was performed by
leaving out all pixels within a site. The algorithms were trained on the remainder of the
database, then tested on each of the four validation pixels.

It is adso possible to determine a site classification rate by combining pixel
classifications within asite. However, the classification rates obtained in this experiment
refer to the number of pixels correctly classified.

A limitation of leave-out-one cross-validation is that cross-validation was not
used to select the number of dimensions for training via the extended canonical variates
procedure. It is possible that a bias could have been introduced in the dimension

reduction process.
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6.2.3 Algorithmstested

Algorithms considered in this experiment included LDA, CART, KNN, and
orthonormal basis function networks employing the discrete cosine, Daubechies D4, and
Legendre polynomial bases. The experiment aso included the ARTMAP system of

Chapter 2 with the following representative parameters. baseline vigilance p =0, choice

parameter a =.001, and V =3 voters. Sites, each containing four pixels, were presented
an average of 108 times.

Support vector machines and backpropagation neural networks were excluded due
to their large training time requirements. On DELVE databases with a similar number of
training exemplars, the versions of these algorithms employed in this dissertation
required upwards of 20 minutes of CPU time for training, and typically an hour or more
(Figure 5.6, Figure 5.23). Extrapolating from these numbers, in a |leave-out-one-site
cross-validation scheme with 358 sites, the expected CPU time necessary for the
evaluation performed in this chapter on other algorithms is anywhere from 120 hours to
360 hours or more. This long running time is attributable to the cross-validated model
selection integral to the algorithms presented in 5.1, which for backprop and SVM
algorithms increases the running time by an order of magnitude or more over ad hoc

parameter selection.

6.3 Results and discussion

Performance of the LDA classifier (93.5%) was significantly better than that of all

other classifiers tested. The ARTMAP classifier (84.1%), followed by the Daubechies
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orthonormal basis function classifier, (87.1 %) performed significantly worse than all
other algorithms tested. Remaining classifiers (KNN, CART, and cosine and Legendre
orthonormal basis function networks) did not have significantly different performance
from one another; all had a classification rate between 90.1% and 91.0%.

An important observation is that the orthonormal basis function networks do not
perform afull linear discriminant. Rather, LDA is used as a postprocessing tool to better
draw decision boundaries. These boundaries are not drawn in the full space of the
orthonormal basis transformation.

Canonical variate analysis on the 65-dimensional feature vectors alows the
database to be visualized in up to seven dimensions. The seven-dimensional view shows
why LDA is an effective approach for this classification task. The first two canonical
variates, in Figure 6.3, show that most of the classes are in clusters that are nearly
separable by linear boundaries. These include classes 5 through 8 (agriculture in
desert/coast, reclamation, wetland reclamation, and other), each of which appears as a
single cluster, and class 4 (agriculture in delta), which appears to be bimodal with two
distinct clusters. Using the first two canonical variates alone, it is difficult to distinguish
between classes 1, 2, and 3 (urban, urbanization, and reduced productivity).

Although it appears from the first two variates to be a difficult task to separate
classes 1 through 3, additional variates provide a greater degree of separation between the
classes. This can particularly be seen in Figure 6.9. Class 2 (urbanization) is the only
class that does not form one or more visually distinguishable clusters in the canonical

variate plots, athough the seventh canonical variate in Figure 6.6 appears to separate
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some members of this class from the remainder of the database. This visual analysis
suggests that a linear discriminant that can determine appropriate separation boundaries
between the clusters should classify most data with few errors.

Figure 6.2 shows a comparison of six classifiers on the Egypt land use change
database. Significance of differences was evaluated using McNemar’s test (Fleiss 1981,
Ripley 1996). With the exception of the ARTMAP classifier developed in Chapter 2, all
algorithms were applied to normalized 65-dimensional feature vectors containing the data
listed in Table 6.1.

Figure 6.11 gives a measure of the importance of each of the variates in
determining the classification. This chart highlights the relatively large import of
geographical region in determining land use and land use change classification.
Moreover, al of the most important image spectral bands are taken from the first three
images of the dataset and the final image of the dataset, suggesting that land use change

was occurring throughout the entire measured period.
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Input vector | Description

element

1-6 Normalized spectral bands from the June 7, 1984 image

7-12 Normalized spectral bands from the September 11, 1984 image
13-18 Normalized spectral bands from the June 10, 1985 image
19-24 Normalized spectral bands from the December 22, 1986 image
25-29 Normalized spectral bands from the May 15, 1990 image
30-35 Normalized spectral bands from the August 21, 1988 image
36-41 Normalized spectral bands from the August 3, 1990 image
42-47 Normalized spectral bands from the February 19, 1991 image
48-53 Normalized spectral bands from the June 13, 1992 image
54-59 Normalized spectral bands from the from April 29, 1993 image
60 Pixel x-coordinate

61 Pixel y-coordinate

62 Geographic region indicator for delta (Boolean)

63 Geographic region indicator for desert (Boolean)

64 Geographic region indicator for coast (Boolean)

65 Geographic region indicator for wetlands (Boolean)

Table 6.1: Classifier inputs for the Nile River delta land use change task.
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Figure 6.2: Staircase plot of Egypt land use change dataset results for six classifiers.
Performance was evaluated using leave-out-one cross-validation in which each site
was omitted in turn and the classifiers were trained on the remaining sites.
Significance levels were determined with McNemar’s test (Fleiss 1981; Ripley 1996).
Error bars are not available due to the testing methodology. These results show
three performance tiers with no significant difference between the Cosine and
Legendre orthonormal basis function networks, CART, and K-nearest neighbors.
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Second Canonical Variate
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-6 -4 -2 0 2 4 6 8
First Canonical Variate

Figure 6.3: First and second canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Figure 6.4: First and third canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Figure 6.5: First and fourth canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Figure 6.6: First and seventh canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Figure 6.7: Second and third canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Figure 6.8: Second and fourth canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Figure 6.9: Second and fifth canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Figure 6.10: Third and fourth canonical variates of the Egypt land use change
database. Classes are indicated by digits one through eight: 1 = urban, 2 =
urbanization, 3 = reduced productivity, 4 = agriculture, 5 = agriculture in desert/coast,
6 = reclamation, 7 = wetland reclamation, 8 = other.
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Area 1 (Delta)

Image 3 (6/10/85), Band 3
Area 2 (Desert)

Image 10 (4/29/93), Band 3
Image 10 (4/29/93), Band 6
Image 10 (4/29/93), Band 5
Image 2 (9/11/84), Band 2
Image 2 (9/11/84), Band 1
Image 3 (6/10/85), Band 6
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Figure 6.11: The twelve components of the Egypt land use change database with the
largest root sum-of-squares A weights in the canonical variate analysis (CVA). The
indicator variables for the areas Delta and Desert are strongly related to the class
labels. Other major class predictors include three bands each from the images
taken on September 11, 1984; June 10, 1985; and April 29, 1993; and one band from
the image taken on June 7, 1984. These represent the first year and the last year of
the study period.
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Land use Pixels §,
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31855 |38 E|EE :
g § | S gl Eg| 8 % 8 g 3| B 'g
o] O = 4 = _— Rt
) ) -68: 5 <3| &8 gg =8| & -)
Urban 290 | 263 7 13 7 90.7%
Urbanization 33 3 24 1 5 72.7%
Reduced productivity 127 6 4| 110 3 4] 86.6%
Agriculturein delta 540 4 5 531 98.3%
Agriculturein 41 2 36 3 87.8%
desert/coast
Reclamation 88 14 72 2| 818%
Wetlands reclaimed 16 12 4| 75.0%
Other 297 2 4 291 | 98.0%
1432 | 276 | 40| 124| sea| 38| 76| 12| 304 Overdl
Totd 93.5%

Table 6.2: User’s accuracy assessment of the LDA classifier on 1,432 pixels cross-
validated by leaving out one four-pixel site. Errors include difficulties
distinguishing urbanization from other land uses, confusion between urban and
reduced productivity, and errors of commission identifying reclamation, agriculture
in desert/coast, and wetlands reclaimed sites. Overall accuracy on the ground truth
dataset was 93.5%.
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Field assessments
Land use 2
classifications £ £ 2
S 2 og| & 5
g B3| 2 28| & 8T g
N ® B 5 R % S E o
& & 53| 28g| & =T| B
£ | £ | 88 52| 58 38 | Tg £ | ®
) ) Xxs| <o| <o°| X =92 0O p
1.609 0.043 0.080 0.043
Urban % % % % 1.774%
0.038 0.300 0.013 0.063
Urbanization % % % % 0.413%
Reduced 0004 | 0063 | 1.732| 0047 0.063 .
productivity % % % % % | 2000%
Agriculturein | 0397 | 0.496 52.656
S %| % " 53.549%
Agriculturein 0.044) 0799 00671 5.910%
desert/coast % % %
0.850 4.370 0.121
Reclamation % % % 5.341%
Wetlands 0.557 0.1%6 0.743%
reclaimed %o %
0.238 0.475 34.559
Other % o | 35271%
Estimated 2137 | 0902 | 1.824| 53940 | 0799 | 4845 | 0557 | 3499
true ) % % % % % % % %
proportions
Producer’s 753| 333| 950| 976| 1000| 90.2| 1000 988| Overall
accuracy % % % % % % % % 96.6%

Table 6.3: Producer’s accuracy assessment of the LDA classifier on 1,432 pixels
cross-validated by leaving out one four-pixel site. Producer’s accuracy estimates the
percentage of pixels of each ground truth class correctly identified. The overall
producer’s accuracy of 96.6% is an estimate of the percentage of pixels in the entire
map that are correctly identified.
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Figure 6.12: Map of labels assigned by the LDA classifier in the Nile River Delta
study area. Water and outside study area were labeled by application of appropriate
masks to the map. The most noticeable error is that coastal regions are labeled
almost entirely as agriculturein desert/coast regardless of their land use.

6.4 Conclusions

Orthonormal basis function classifiers were found to be suitable for processing
remotely sensed land use change data from the Nile River delta The cosine and
Legendre orthonormal basis function systems did not differ significantly from the CART
and KNN classifiers. LDA had the best classification rate of all tested systems,

suggesting that the data are close to linearly separable.
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Visual inspection of the canonical variates appears to bear this out. It may not be
necessary to perform a nonlinear transformation to get the data into a space in which the
classes are for the most part linearly separable. For such a database on which LDA
performs exceptionally well, it may not be advantageous to transform the dataas a step in
classification. It may instead be best to use a ssimple linear discriminant if the data

aready appear to be clustered by class.
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Chapter 7

Future Work

7.1 Introduction

The orthonormal basis function neural network classifiers introduced in this
dissertation provide a viable platform for multidimensional pattern classification. Many
opportunities exist to explore variations on these classifiers, a few of which have been
identified during the course of this study.

The multitemporal LDA classifier used for Nile River delta land use change
classification in Chapter 6 also could serve as a starting point for interesting variations.
These might improve the classification accuracy of a linear discriminant as applied to

such remote sensing data.

7.2 Future work in orthonormal basis function pattern classification

7.2.1 Stepwise regression for selection of model terms

Adaptive spline fitting methods such as MARS (Friedman 1991) and
POLYMARS (Stone, Hansen et al. 1997) incorporate algorithmic approaches to select
the terms that will be incorporated in a model. These use a forward and backward
stepwise regression methodology (Friedman and Silverman 1989) to build a sequence of
models, each differing by the inclusion or exclusion of a single model term. Such an
approach might prove useful for selecting orthonormal basis function models, in

particular if minimization of an objective function other than the MISE is desired.
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Stepwise regression would need to be coupled with a cross-validation or generalized
cross-validation methodology to determine the goodness of fit. A potential advantage of
stepwise regression is that basis functions could be selected from a very large pool, since

it might not be necessary to restrict the size of the pool to prevent overfitting.

7.2.2 Shrinkage for selection and fitting of model terms

An aternative to truncation methods (stopping and single-term exclusion) for
model refinement is shrinkage (Tibshirani 1996; Hastie, Tibshirani et al. 2001).
Shrinkage methods define an objective measure with a penalty on the size of the
coefficients, such as a penalized residual sum of squares, and iteratively attempt to
minimize this objective measure by shrinking the coefficients of afit toward zero. Terms
are eliminated from a model if their coefficients are shrunk to zero. This resultsin a
biased model that may have significantly less error than the original fit. A potential
drawback is that the iterative optimization steps of shrinkage methods can be
computationally expensive and time-consuming. This might negate a major advantage of

using orthonormal basis function expansions, the speed of fitting a model.

7.2.3 Objective thresholds for automated scree tests based on eigenvalue influence

In the automated scree test for principal component dimensionality introduced in
4.2.2, the threshold I, was based on an ad hoc evaluation of two well studied
psychological databases. These databases give some indication of the suitability of this

method and of appropriate values for the threshold I ,,,. Additional study isrequired to

determine whether this thresholding method is appropriate for a wider variety of
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problems. If so, a key problem is to determine a technique for selecting appropriate

thresholds in an objective manner.

7.3 Future work in land use change classification

7.3.1 Improving error rates through discriminant analysis on low-confidence data
Although the multitemporal LDA classifier achieved 93.5% user’s accuracy on
the Nile River land use change database, it may be possible to identify systematic sources
of classification error and improve these results further. A potentia approach is to
identify the small percentage of data points misclassified, and then run further
discriminant analysis on these data. If a linear discriminant is used as this second
classifier, however, it is unclear how to combine it with the main LDA model, since an
additive model of linear discriminants would yield a linear model, only with parameters

different from the main, optimal LDA model.
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Analysis of Variance Tables

A.1 Introduction
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The following are tables summarizing results for the four-way ANOVA multiple

comparison of Section 4.4. For each task with a particular number of exemplars, two

tables are given. Thefirst isfor afour-way model without interactions, while the second

is for the best four-way model with interactions, selected to minimize the Akaike

information criterion (AIC) as implemented by the R Development Core Team (2003).

The estimated AIC for each model is given, as is The Shapiro-Wilk test statistic for

normality of the residuals. (R Development Core Team 2003).

The response variable is the zero-one classification error. The four factors under

consideration in the ANOV A models, and their corresponding abbreviations in the results

of the following sections, are as follows:

Abbreviation | Factor Levels

pre Preprocessing method CVA, PCA

dim Preprocessing dimensiondlity | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Ida Postprocessing method LDA, Maximum (no postprocessing)
bas Basis Cosine (discrete cosine basis with

zero-crossing cutoff criterion),
Daubechies (second-order
Daubechies wavelets with scale
product cutoff criterion),
Legendre (polynomial basis with
polynomial-order cutoff criterion)
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A.2 ANOVA tables for the DELVE image segmentation task

A.2.1 Image segmentation, 70 exemplars

Anal ysis of Variance Table for the four-way nodel w thout
i nteractions

Response: C assification error
Df Sum Sq Mean Sq F val ue Pr (>F)

pre 1 0.7379 0.7379 220.0544 < 2.2e-16 ***

| da 1 0.3126 0.3126 93.2172 < 2.2e-16 ***

di m 11 0.8931 0.0812 24.2107 < 2.2e-16 ***

bas 2 0.0551 0.0276 8.2191 0.0002858 ***

Resi dual s 1136 3.8094 0.0034

Signif. codes: O "***" 0.001 **' 0.01 "*'" 0.05 ." 0.1 '
1

Resi dual standard error: 0.05790834
Estimated effects may be unbal anced

Al C  -3276. 729

Shapiro-WIlk normality test
W= 0.9874, p-value = 2.066e-08
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Anal ysis of Variance Table for the best four-way nodel wth
i nteractions

Response: C assification error
Df Sum Sqg Mean Sq F val ue Pr (>F)

pre 1 0.7379 0.7379 240.3786 < 2.2e-16 ***
| da 1 0.3126 0.3126 101.8267 < 2.2e-16 ***
di m 11 0.8931 0.0812 26.4468 < 2.2e-16 ***
bas 2 0.0551 0.0276 8.9782 0.0001355 ***
pre: dim 11 0.2182 0.0198 6.4618 1.754e-10 ***
| da: di m 11 0.1203 0.0109 3.5626 6.031le-05 ***
| da: bas 2 0.0445 0.0223 7.2548 0.0007409 **=*
pre: | da: bas 3 0.0219 0.0073 2.3806 0.0681024 .
Resi dual s 1109 3.4045 0.0031

Signif. codes: 0 “***' 0.001 "**' 0.01 "*'" 0.05 "." 0.1 '
1

Resi dual standard error: 0.05540619
Estimated effects may be unbal anced

Al C.  -3352. 208

Shapiro-WIlk normality test
W= 0.9784, p-value = 4.266e-12



155

A.2.2 | mage segmentation, 140 exemplars

Anal ysis of Variance Table for the four-way nodel w thout
i nteractions

Response: C assification error
Df Sum Sqg Mean Sq F val ue Pr (>F)

pre 1 0.5510 0.5510 114.9709 < 2.2e-16 ***
| da 1 0.0168 0.0168 3.5011 0. 06159 .

dim 11 1.0870 0.0988 20.6175 < 2.2e-16 ***
bas 2 0.2647 0.1324 27.6157 1.946e-12 ***

Resi dual s 1136 5.4446 0.0048

Signif. codes: 0 “***' (0.001 "**' 0.01 "*" 0.05 ".'" 0.1 '
1

Resi dual standard error: 0.06922985

Estimated effects may be unbal anced

Al C.  2865. 302

Shapiro-WIlk normality test
W= 0.9978, p-value = 0.1294
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Anal ysis of Variance Table for the best four-way nodel wth
i nteractions

Response: C assification error
Df Sum Sqg Mean Sq F val ue Pr (>F)

pre 1 0.5510 0.5510 130.2908 < 2.2e-16 ***

| da 1 0.0168 0.0168 3.9676 0.04663 *

di m 11 1.0870 0.0988 23.3647 < 2.2e-16 ***

bas 2 0.2647 0.1324 31.2955 5.988e-14 ***
pre:dim 11 0.3855 0.0350 8.2858 4.194e-14 ***

| da: di m 11 0.2525 0.0230 5.4278 1.842e-08 ***

| da: bas 2 0.1037 0.0519 12.2612 5.406e-06 ***

Resi dual s 1112 4.7029 0.0042

Signif. codes: 0 “***' 0.001 "**' 0.01 "*'" 0.05 "." 0.1 '

1

Resi dual standard error: 0.06503251
Estimated effects may be unbal anced

Al C.  -2986. 004

Shapiro-WIlk normality test
W= 0.9974, p-value = 0.05682
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A.2.3 |Image segmentation, 280 exemplars

Anal ysis of Variance Table for the four-way nodel w thout
i nteractions

Response: C assification error
Df  Sum Sq Mean Sq F val ue Pr (>F)

pre 1 0.29272 0.29272 52.5511 1.399e-12 ***
| da 1 0.00436 0.00436 0.7829 0. 3766

di m 11 0.57833 0.05258 9.4387 1.103e-15 ***
bas 2 0.34944 0.17472 31.3670 1.224e-13 ***

Resi dual s 560 3.11932 0. 00557

Signif. codes: 0 “***' (0.001 "**' 0.01 "*" 0.05 ".'" 0.1 '
1

Resi dual standard error: 0.07463383

Estimated effects may be unbal anced

Al C. -1337.235

Shapiro-WIlk normality test
W= 0.9885, p-value = 0.0001773
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Anal ysis of Variance Table for the best four-way nodel wth
i nteractions

Response: C assification error
EX Sum Sq Mean Sq F val ue Pr (>F)

pre 0.29272 0.29272 55.0445 4.537e-13 ***

| da 1 0. 00436 0.00436 0.8200 0.365572

di m 11 0.57833 0.05258 9.8865 < 2.2e-16 ***

bas 2 0.34944 0.17472 32.8553 3.361le-14 ***

pre:|lda 1 0.05366 0.05366 10.0910 0.001574 **

| da: di m 11 0.12843 0.01168 2.1955 0.013492 *

| da: bas 2 0.03366 0.01683 3.1647 0.043005 *

Resi dual s 546 2.90357 0.00532

Signif. codes: 0 “***' 0.001 "**' 0.01 "*'" 0.05 "." 0.1 '

1

Resi dual standard error: 0.07292386
Estimated effects may be unbal anced

Al C. -1350.519

Shapiro-WIlk normality test
W= 0.9901, p-value = 0.0006168
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A.3 ANOVA tables for the DELVE letter recognition task

A.3.4 Letter recognition, 390 exemplars

Anal ysis of Variance Table for the four-way nodel w thout
i nteractions

Response: C assification error
Df Sum Sqg Mean Sq F val ue Pr (>F)

pre 1 1.3955 1.3955 1099.751 < 2.2e-16 ***

| da 1 1.4404 1.4404 1135.114 < 2.2e-16 ***

di m 11 1.2007 0.1092 86.018 < 2.2e-16 ***

bas 2 3.4561 1.7281 1361.818 < 2.2e-16 ***

Resi dual s 848 1.0761 0.0013

Signif. codes: O "***" 0.001 **' 0.01 "*'" 0.05 ." 0.1 '

1

Resi dual standard error: 0.03562223
Estimated effects may be unbal anced

Al C  -3292.734

Shapiro-WIlk normality test
W= 0.9944, p-value = 0.002576
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Anal ysis of Variance Table for the best four-way nodel wth
i nteractions

Response: C assification error
Df Sum Sg Mean Sq  F val ue Pr (>F)

pre 1 1.3955 1.3955 2487.8702 < 2.2e-16 ***
| da 1 1.4404 1.4404 2567.8693 < 2.2e-16 ***
di m 11 1.2007 0.1092 194.5915 < 2.2e-16 ***
bas 2 3.4561 1.7281 3080.7195 < 2.2e-16 ***
pre: |l da 1 0.0379 0.0379 67.5294 8.694e-16 ***
pre:dim 11 0.3646 0.0331 59. 0876 < 2.2e-16 ***
| da: di m 11 0.0597 0.0054 9.6694 < 2.2e-16 ***
pre: bas 2 0.0220 0.0110 19. 6272 4.840e-09 ***
| da: bas 2 0.0215 0.0107 19. 1416 7.686e-09 ***
di m bas 22 0.1055 0.0048 8.5469 < 2.2e-16 ***
pre: | da: bas 2 0.0066 0.0033 5.8951 0.002878 **
pre:dimbas 22 0.0236 0.0011 1.9155 0.007064 **
Resi dual s 775 0.4347 0.0006
0O "***' 0.001 “**' 0.01 "*'" 0.05 "." 0.1 '

Signif. codes:
1

Resi dual standard error: 0.02368397
Estimated effects may be unbal anced
Al C. -3929. 829

Shapiro-WIlk normality test
W= 0.9967, p-value = 0.07378
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A.3.5 Letter recognition, 780 exemplars

Anal ysis of Variance Table for the four-way nodel w thout
i nteractions

Response: C assification error
Df  Sum Sq Mean Sq F val ue Pr (>F)
1

pre 1.18686 1.18686 1214.01 < 2.2e-16 ***

| da 1 0.94247 0.94247 964.03 < 2.2e-16 ***

di m 11 1.69071 0.15370 157.22 < 2.2e-16 ***

bas 2 2.83378 1.41689 1449.31 < 2.2e-16 ***

Resi dual s 848 0.82903 0.00098

Signif. codes: 0 “***' 0.001 "**' 0.01 "*'" 0.05 "." 0.1 '
1

Resi dual standard error: 0.03126713
Estimated effects may be unbal anced

Al C. -3518. 069

Shapiro-WIlk normality test
W= 0.9972, p-value = 0.1392
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Anal ysis of Variance Table for the best four-way nodel wth
i nteractions

Response: C assification error
EX Sum Sq Mean Sq  F val ue Pr (>F)

pre 1.18686 1.18686 3654.0327 < 2.2e-16 ***
| da 1 0. 94247 0.94247 2901. 6223 < 2.2e-16 ***
di m 11 1.69071 0.15370 473.2059 < 2.2e-16 ***
bas 2 2.83378 1.41689 4362.2540 < 2.2e-16 ***
pre:lda 1 0.04572 0.04572 140.7748 < 2.2e-16 ***
pre: dim 11 0.25904 0.02355 72.5005 < 2.2e-16 ***
| da: di m 11 0.04562 0.00415 12.7680 < 2.2e-16 ***
| da: bas 2 0.03213 0.01606  49.4552 < 2.2e-16 ***
di m bas 22 0.15739 0.00715 22.0263 < 2.2e-16 ***
pre:lda:dim 11 0.00996 0.00091 2.7879 0.0014564 **
pre:lda:bas 2 0.00299 0.00149 4.5986 0.0103537 *
pre:dimbas 22 0.01667 0.00076 2.3324 0.0005372 ***
| da: dimbas 22 0.01786 0.00081 2.4996 0.0001778 ***
Resi dual s 744 0.24166 0.00032

Signif. codes: 0 “***' 0.001 "**' 0.01 "*'" 0.05 "." 0.1 '

1

Resi dual standard error: 0.01802241
Estimated effects may be unbal anced

Al C. -4375.158

Shapiro-WIlk normality test
W= 0.9981, p-value = 0.4374
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A.3.6 Letter recognition, 1,560 exemplars

Anal ysis of Variance Table for the four-way nodel w thout
i nteractions

Response: C assification error
Df  Sum Sq Mean Sq F val ue Pr (>F)
1

pre 0. 95754 0.95754 1258.03 < 2.2e-16 ***

| da 1 0.72469 0.72469 952.10 < 2.2e-16 ***

di m 11 1.65515 0.15047 197.69 < 2.2e-16 ***

bas 2 2.29102 1.14551 1504.99 < 2.2e-16 ***

Resi dual s 848 0. 64545 0. 00076

Signif. codes: 0 “***' (0.001 "**' 0.01 "*" 0.05 ".'" 0.1 '
1

Resi dual standard error: 0.02758881
Estimated effects may be unbal anced

AlC. -3734. 34

Shapiro-WIlk normality test
W= 0.9973, p-value = 0.1730
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Anal ysis of Variance Table for the best four-way nodel wth
i nteractions

Response: C assification error
EX Sum Sq Mean Sq  F val ue Pr (>F)

pre 0. 95754 0.95754 3945.3743 < 2.2e-16 ***
| da 1 0. 72469 0.72469 2985.9321 < 2.2e-16 ***
dim 11 1.65515 0.15047 619.9764 < 2.2e-16 ***
bas 2 2.29102 1.14551 4719.8632 < 2.2e-16 ***
pre: |l da 1 0.04969 0.04969 204.7326 < 2.2e-16 ***
pre:dim 11 0. 14906 0.01355 55.8338 < 2.2e-16 ***
| da: di m 11 0.07244 0.00659 27.1334 < 2.2e-16 ***
pre: bas 2 0.00388 0.00194 8.0031 0.000362 ***
| da: bas 2 0.03961 0.01980 81.5946 < 2.2e-16 ***
di m bas 22 0.12894 0. 00586 24.1486 < 2.2e-16 ***
pre: | da: bas 2 0.00840 0.00420 17. 3073 4.387e-08 ***
Resi dual s 797 0.19343 0.00024
0O "***' 0.001 “**' 0.01 "*'" 0.05 "." 0.1 '

Signif. codes:
1

Resi dual standard error: 0.01557883
Estimated effects may be unbal anced
AlC. -4673.478

Shapiro-WIlk normality test
W= 0.9969, p-value = 0.08897
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Appendix B

Software for Orthonormal Basis Function Neural Network Classifiers

The software for orthonormal basis function classification are published in a
public repository, the home page of which can be found at http://vera.bu.edu/orth_basis/.
Thisweb server is managed by Dr. Michael A. Cohen:

Dr. Michael A. Cohen

Associate Professor of Cognitive and Neural Systems and Computer Science
Department of Cognitive and Neural Systems

677 Beacon St

Boston, MA 02215

(617) 353-9484

mike@cns.bu.edu
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